• Title/Summary/Keyword: Box-Office Performance

Search Result 59, Processing Time 0.029 seconds

Clustering Analysis of Films on Box Office Performance : Based on Web Crawling (영화 흥행과 관련된 영화별 특성에 대한 군집분석 : 웹 크롤링 활용)

  • Lee, Jai-Ill;Chun, Young-Ho;Ha, Chunghun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.3
    • /
    • pp.90-99
    • /
    • 2016
  • Forecasting of box office performance after a film release is very important, from the viewpoint of increase profitability by reducing the production cost and the marketing cost. Analysis of psychological factors such as word-of-mouth and expert assessment is essential, but hard to perform due to the difficulties of data collection. Information technology such as web crawling and text mining can help to overcome this situation. For effective text mining, categorization of objects is required. In this perspective, the objective of this study is to provide a framework for classifying films according to their characteristics. Data including psychological factors are collected from Web sites using the web crawling. A clustering analysis is conducted to classify films and a series of one-way ANOVA analysis are conducted to statistically verify the differences of characteristics among groups. The result of the cluster analysis based on the review and revenues shows that the films can be categorized into four distinct groups and the differences of characteristics are statistically significant. The first group is high sales of the box office and the number of clicks on reviews is higher than other groups. The characteristic of the second group is similar with the 1st group, while the length of review is longer and the box office sales are not good. The third group's audiences prefer to documentaries and animations and the number of comments and interests are significantly lower than other groups. The last group prefer to criminal, thriller and suspense genre. Correspondence analysis is also conducted to match the groups and intrinsic characteristics of films such as genre, movie rating and nation.

A Study for the Drivers of Movie Box-office Performance (영화흥행 영향요인 선택에 관한 연구)

  • Kim, Yon Hyong;Hong, Jeong Han
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.441-452
    • /
    • 2013
  • This study analyzed the relationship between key film and a box office record success factors based on movies released in the first quarter of 2013 in Korea. An over-fitting problem can happen if there are too many explanatory variables inserted to regression model; in addition, there is a risk that the estimator is instable when there is multi-collinearity among the explanatory variables. For this reason, optimal variable selection based on high explanatory variables in box-office performance is of importance. Among the numerous ways to select variables, LASSO estimation applied by a generalized linear model has the smallest prediction error that can efficiently and quickly find variables with the highest explanatory power to box-office performance in order.

The Periodic Relationship between eWOM Volume/Valence and Box Office Revenue (온라인 구전량 및 평점과 시기별 영화 흥행과의 관계)

  • Li, Zhang;Choi, Kang Jun;Lee, Jae-Young
    • Knowledge Management Research
    • /
    • v.18 no.2
    • /
    • pp.65-83
    • /
    • 2017
  • Word-of-mouth (WOM), the communication between consumers offline, has transformed to include electronic word-of-mouth(eWOM), which has grown in its influence due to the advancements in communication technology. Despite the fact that many researchers have studied the impact of WOM and eWOM on the performance of movies in the movie industry, there still exists much controversy. Therefore, this study investigates the relationship of eWOM's volume and valence with the box office revenue for 2 years in Korean movies industry. The results show that the volume of eWOM, which is expected to related to awareness diffusion, is more important than the valence in the early stage of movie release. And in the later stage, the valence of eWOM which is expected to related to persuasion effect influences the box office revenue. In addition, the relationship of the volume and valence on box office revenue in both early and later stage can be increased through the interaction with the star power which raises the familiarity or the movie genre which causes the high arousal.

Using the Hierarchical Linear Model to Forecast Movie Box-Office Performance: The Effect of Online Word of Mouth

  • Park, Jongmin;Chung, Yeojin;Cho, Yoonho
    • Asia pacific journal of information systems
    • /
    • v.25 no.3
    • /
    • pp.563-578
    • /
    • 2015
  • Forecasting daily box-office performance is critical for planning the distribution of marketing resources, and by extension, maximizing profits. For certain movies, the number of viewers increases rapidly at the beginning of their theatrical run, and the increments slow down later. Other movies are not popular in the beginning, but the audience sizes grow rapidly afterward. Thus, the audience attendance of movies grow in different trajectories, which are influenced by various factors including marketing budget, distributors, directors, actors, and word of mouth. In this paper, we propose a method for predicting the daily performance trajectory of running movies based on the hierarchical linear model. More specifically, we focus on the effect of online word of mouth on the shape of the growth curves. We fitted the mean trajectory of the cumulative audience size as a cubic function of time, and allowed the intercept and slope to vary movie-to-movie. Moreover, we fitted the linear slope with a function of online word of mouth predictors to help determine the shape of the trajectories. Finally, we provide performance predictions for individual movies.

A Box Office Type Classification and Prediction Model Based on Automated Machine Learning for Maximizing the Commercial Success of the Korean Film Industry (한국 영화의 산업의 흥행 극대화를 위한 AutoML 기반의 박스오피스 유형 분류 및 예측 모델)

  • Subeen Leem;Jihoon Moon;Seungmin Rho
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.45-55
    • /
    • 2023
  • This paper presents a model that supports decision-makers in the Korean film industry to maximize the success of online movies. To achieve this, we collected historical box office movies and clustered them into types to propose a model predicting each type's online box office performance. We considered various features to identify factors contributing to movie success and reduced feature dimensionality for computational efficiency. We systematically classified the movies into types and predicted each type's online box office performance while analyzing the contributing factors. We used automated machine learning (AutoML) techniques to automatically propose and select machine learning algorithms optimized for the problem, allowing for easy experimentation and selection of multiple algorithms. This approach is expected to provide a foundation for informed decision-making and contribute to better performance in the film industry.

  • PDF

Performance Analysis of Directors, Producers, Main Actors in Korean Movie Industry using Deciles Distribution (2004-2017) (평균 관객 수 10분위를 활용한 감독, 제작자, 배우 흥행성과 분석)

  • Kim, Jung-Ho;Kim, Jae Sung
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.10
    • /
    • pp.78-98
    • /
    • 2018
  • On the 855 pure Korean commercial fictional movies, excluding diversity films, released in Korea from 2004 to August 2017, I conducted deciles distribution analysis of box office performance of those movies and average box office performance of directors, producers and lead actors who involved in making them. Deciles distribution analysis of average box office performance might be helpful to predict their next box office performance of newly produced Korean movies and to evaluate their contribution to box office performance. In baseball, the various index such as winning rate, on-base percentage, slugging percentage, stolen base percentage, battling average, earned run average is used for predicting and reviewing of professional players. In this study, I evaluate the script's narrative quality by the indirect method of insight and judgment of creative manpower involved in making the movies. For the more productive prediction, direct statistical analysis method on the narrative of the script needs to develop. Time series analysis is required to evaluate the rise and fall of creative manpower and network analysis is also necessary to see the interaction among creative people.

A Study on the Box-office Performance of Films based on Computer Games - Forcusing on film Warcraft: The Beginning 2016 - (컴퓨터게임 원작 영화의 흥행성에 관한 연구 -영화 워크래프트 : 전쟁의 서막을 중심으로-)

  • Park, Chanik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.4
    • /
    • pp.193-199
    • /
    • 2017
  • This study applied the scenario of the film "Warcraft: The Beginning, 2016" based on the world view and nonlinear story of online games to the basic requirements of a good story of five items. Based on this, it was found that the storyline of the film "Warcraft: The Beginning, 2016" was faithful to the game series with the same title, but weak for a film. This film did not satisfy any of the five requirements of a good scenario used for Hollywood production. Even before this film, many hit games were made into films, but box office hits are hard to find among them. As the game World of Warcraft was very famous worldwide, when it was made into a film, the film was expected to be a box office hit. However, it failed miserably at the box office. This is a result of failing to recognize that the characteristics of games that an individual leads the story are different from those of films that no interaction or choice can be made. It is necessary to understand that although games and films are the same in that they have narrative structures and visual stimulation graphics, they are totally different in the way they immerse people.

Analyzing Box-Office Hit Factors Using Big Data: Focusing on Korean Films for the Last 5 Years

  • Hwang, Youngmee;Kim, Kwangsun;Kwon, Ohyoung;Moon, Ilyoung;Shin, Gangho;Ham, Jongho;Park, Jintae
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.4
    • /
    • pp.217-226
    • /
    • 2017
  • Korea has the tenth largest film industry in the world; however, detailed analyses using the factors contributing to successful film commercialization have not been approached. Using big data, this paper analyzed both internal and external factors (including genre, release date, rating, and number of screenings) that contributed to the commercial success of Korea's top 10 ranking films in 2011-2015. The authors developed a WebCrawler to collect text data about each movie, implemented a Hadoop system for data storage, and classified the data using Map Reduce method. The results showed that the characteristic of "release date," followed closely by "rating" and "genre" were the most influential factors of success in the Korean film industry. The analysis in this study is considered groundwork for the development of software that can predict box-office performance.

The Impact of Initial eWOM Growth on the Sales in Movie Distribution

  • Oh, Yun-Kyung
    • Journal of Distribution Science
    • /
    • v.15 no.9
    • /
    • pp.85-93
    • /
    • 2017
  • Purpose - The volume and valence of online word-of-mouth(eWOM) have become an important part of the retailer's market success for a wide range of products. This study aims to investigate how the growth of eWOM has generated the product's final financial outcomes in the introductory period influences. Research design, data, and methodology - This study uses weekly box office performance for 117 movies released in the South Korea from July 2015 to June 2016 using Korean Film Council(KOFIC) database. 292,371 posted online review messages were collected from NAVER movie review bulletin board. Using regression analysis, we test whether eWOM incurred during the opening week is valuable to explain the last of box office performance. Three major eWOM metrics were considered after controlling for the major distributional factors. Results - Results support that major eWOM variables play a significant role in box-office outcome prediction. Especially, the growth rate of the positive eWOM volume has a significant effect on the growth potential in sales. Conclusions - The findings highlight that the speed of eWOM growth has an informational value to understand the market reaction to a new product beyond valence and volume. Movie distributors need to take positive online eWOM growth into account to make optimal screen allocation decisions after release.

A Study on the Performance Evaluation of Machine Learning for Predicting the Number of Movie Audiences (영화 관객 수 예측을 위한 기계학습 기법의 성능 평가 연구)

  • Jeong, Chan-Mi;Min, Daiki
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.49-63
    • /
    • 2020
  • The accurate prediction of box office in the early stage is crucial for film industry to make better managerial decision. With aims to improve the prediction performance, the purpose of this paper is to evaluate the use of machine learning methods. We tested both classification and regression based methods including k-NN, SVM and Random Forest. We first evaluate input variables, which show that reputation-related information generated during the first two-week period after release is significant. Prediction test results show that regression based methods provides lower prediction error, and Random Forest particularly outperforms other machine learning methods. Regression based method has better prediction power when films have small box office earnings. On the other hand, classification based method works better for predicting large box office earnings.