• Title/Summary/Keyword: Bowtie

Search Result 28, Processing Time 0.022 seconds

Analysis of Differentially Expressed Genes Between Leaves and Grain Tissues of Three Wheat Cultivars

  • Kang, Yuna;Kang, Chon-Sik;Kim, Changsoo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2019.09a
    • /
    • pp.148-148
    • /
    • 2019
  • Wheat is a very important crop as a food source worldwide, but gluten in wheat causes a variety of allergic reactions. Previous studies have developed ${\omega}-5$ gliadin deleted O-free, known as the central antigen of WDEIA (wheat-dependent exercise-induced anaphylaxis). In this study, we performed RNA sequencing on the grains and leaves of the allergic-reduced species O-free and their cultivars, Keumkang and Olgeuru, to analyze differentially expressed genes (DEG) based on different cultivars and tissues. Tissues of all species were biologically repeated three times. We used bowtie2 version 2.3.5.1 to get sequence data from RNAseq and used cufflinks and Tophat programs to find DEG. When comparing leaf and grain tissues, a total of 1,244 DEGs were found in the leaf tissues while only 563 DEGs were found in the grain tissues. As a result of gene ontology analysis of differentially expressed genes, the leaf tissues were mostly included in the "catalytic activity" part of molecular function, "metabolic process" part of biological process, and "membrane" part of cell component. The grain tissues were mostly included in the "metabolic process" part of biological process, "binding" and "catalytic activity" part of molecular function, and "membrane, cell, cell part" parts of cell component. Based on these results, we present information on the differentially expressed genes of the three cultivars of leaves and grains. This study could be an important basis for studying the characteriztion of O-free.

  • PDF

A Study on the Improvement of Safety Management on Container Terminal -Using Hazard Identification and Bow-tie Method- (컨테이너 터미널 안전관리 개선방안에 관한 연구 - 위험성 평가 및 보우타이기법이용 -)

  • Park, Sunghun;You, Ji-Won;Kim, Yul-Seong
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.57-63
    • /
    • 2019
  • It is time to study safety improvement on container terminals to maintain a high-quality service to customers' productivity and safety. The data analyzed was of the past 3 years accidents data from a container terminal in the Busan port. I especially tried to found out the equipment that had the highest number of accidents and what the main causes were. This study suggests the top hazards identified in the container terminal using risk assessment, Moreover, it seeks control measurements to prevent hazards by bowtie methodology.

Terahertz Transmission Imaging with Antenna-Coupled Bolometer Sensor (안테나 결합형 볼로미터 방식 테라헤르츠 센서를 이용한 이차원 주사 방식의 투과형 테라헤르츠 영상 취득에 관한 연구)

  • Lee, Kyoung Il;Lim, Byung Jik;Won, Jongsuk;Hong, Sung Min;Park, Jae Hyoun;Lee, Dae Sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.311-316
    • /
    • 2018
  • An antenna-coupled bolometer-type terahertz sensor was designed, fabricated, evaluated, and utilized to obtain terahertz transmission images. The sensor consists of a thin film bowtie antenna that resonates accordingly in response to an incident terahertz beam, a heater that converts the applied current in the antenna into heat, and a microbolometer that converts the rise in temperature into a change in resistance. The device is fabricated by a bulk micromachining process on a 4-inch silicon wafer. The fabricated sensor chip has a size of $2{\times}2mm$ and an active area of $0.1{\times}0.1mm^2$. The temperature coefficient of resistance (TCR) of the bolometer film (VOx) is 2.0%, which is acceptable for bolometer applications. The output sensor signal is proportional to the power of the incident terahertz beam. Transmission images were obtained with a 2-axis scanning imaging system that contained the sensor. The small active area of the sensor will enable the development of highly sensitive focal plane array sensors in terahertz imaging cameras in the future.

Design of Compact Planar Quasi-Yagi Antenna for DTV Reception (디지털방송 수신용 평면 준-야기 안테나의 소형화 설계)

  • Lee, Jong-Ig;Han, Dae-Hee;Kim, Soo-Min;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.583-585
    • /
    • 2012
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) receiving. The coplanar strip line feeding the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type director at a location close to the driver dipole, a broadband impedance matching and a gain characteristics in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bowtie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and tested experimentally to verify the results of this study.

  • PDF

Comparative Transcriptome Analysis of Queen, Worker, and Larva of Asian Honeybee, Apis cerana

  • Kim, Woo Jin;Lee, Seok Hee;An, Saes Byeol;Kim, Song Eun;Liu, Qin;Choi, Jae Young;Je, Yeon Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.2
    • /
    • pp.271-276
    • /
    • 2013
  • The Asian honeybee, Apis cerana, is a native honeybee species in Korea which is important in agriculture for pollination and honey production. For better understanding of the physiology of A. cerana, high-throughput Illumina transcriptome sequencing was performed to analyze the gene expression profiles of queen, worker, and larva. A total of 219,799,682 clean reads corresponding to 22.2 Gb of nucleotide sequences was obtained from the whole body total RNA samples. The Apis mellifera reference mRNA sequence database was used to measure the gene expression level with Bowtie2 and eXpress software, and the Illumina short reads were then mapped to 11,459 out of 11,736 A. mellifera reference genes. Total of 9,221 genes with FPKM value greater than 5 of each sample group were subjected to eggNOG with BLASTX for gene ontology analysis. The differential gene expression between queen and worker, and worker and larva were analyzed to screen the overexpressed genes in each sample group. In the queen and worker sample group, total of 1,766 genes were differentially expressed with 887 and 879 genes overexpressed over two folds in queen and worker, respectively. In the worker and larva sample group, total of 1,410 genes were differentially expressed with 1,009 and 401 genes overexpressed over two folds in worker and larva, respectively.

The Comparison of Fluorescein Patterns between Spherical RGP Lens and Aspherical RGP Lens by Corneal Type and Astigmatic Degree (각막형상과 난시도에 따른 구면 RGP 렌즈와 비구면 RGP 렌즈의 플루레신 염색 패턴 비교)

  • Park, Eun Hye;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • Purpose: The change of alignment between RGP lens and cornea according to the lens design was investigated by comparing the areas of fluorescein pattern in central and peripheral regions analyzed by astigmatic degree and corneal type when spherical and aspherical RGP lenses fitted in alignment. Methods: The fluorescein patterns of 90 eyes (19-30 years, $25.12{\pm}3.52$) having with-the-rule astigmatism were analyzed after spherical and aspherical RGP lenses fitted in alignment. Then, their fluorescent areas in central and peripheral regions were calculated and compared for the quantitative evaluation. Results: The case showing concordant base curve between spherical and aspherical RGP lenses in alignment fitting was 72% however, the possibility to have same base curves between spherical and aspherical RGP lenses in alignment fitting was to be less in the case of symmetric bowtietyped cornea and high astigmatism. The fluorescent area in peripheral region of aspherical RGP lens in alignment fitting was smaller than it of spherical RGP lens. Peripheral fluorescent areas in both RGP lenses decreased according to the increase of astigmatic degree and peripheral area in symmetric bowtie-typed corea was smaller than round-typed cornea's peripheral area. In the case of same astigmatic degree, peripheral fluorescent area of aspherical RGP lens was smaller in both corneal types. Conclusions: The results above suggest the changing degree in the alignment between RGP lens and cornea can be varied according to lens design, corneal astigmatism and corneal type. Thus, the results obtained from the quantitative analysis of the alignment between lens design and cornea may be used as the basic information about the establishment of guidelines for RGP lens fitting, the development of proper lens design, and different tear volume in partial regions.

A Comparison of the Contact Areas between Cornea and RGP Lenses by Fitting Status (피팅 상태에 따른 RGP 렌즈와 각막과의 간극 비교)

  • Park, Eun Hye;Kim, So Ra;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • Purpose: In this study, the effect of lens fitting status on the contact area between spherical/aspherical RGP lens and the cornea having different astigmatic degree and corneal type was investigated for guiding the proper selection of RGP lens. Methods: Spherical and aspherical RGP lenses were applied on ninety eyes $(25.12{\pm}3.52years)$ having with-the-rule astigmatism by different fitting status. Then, their central, mid-peripheral and peripheral areas of fluorescein pattern were calculated and compared for the quantitative evaluation of the contact area between spherical/aspherical RGP lens. Results: The central and peripheral areas with the alignment fitting was significant different based on lens design. However, the central area didn't show any significant difference by lens design and corneal type when fitted in steep or flat. When analyzed by the corneal shape, both lenses with alignment and flat fitting had significant difference in central and peripheral areas. However, the central, mid-peripheral and peripheral areas with steep fitting didn't show the difference by corneal types. When analyzed by the astigmatic degree, the central and peripheral areas with alignment fitting changed proportionally to the increase of corneal astigmatism regardless of corneal shape. With steep and flat fitting, however, the central, mid-peripheral and/or peripheral areas in round- and symmetric bowtie-typed corneas showed the conflicting result when compared to those of alignment fitting when analyzed by the astigmatic degree. Conclusions: In this study, it was confirmed that the contact areas of cornea and RGP lens fitted steep and flat status were largely affected by the corneal type and corneal astigmatism rather than RGP lens fitted in alignment status. Also, this result commonly occurred in both spherical and aspherical RGP lenses.

Image Evaluation for Optimization of Radiological Protection in CBCT during Image-Guided Radiation Therapy (영상유도 방사선 치료 시 CBCT에서 방사선 방호최적화를 위한 영상평가)

  • Min-Ho Choi;Kyung-Wan Kim;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • With the development of medical technology and radiation treatment equipment, the frequency of high-precision radiation therapy such as intensity modulation radiation therapy has increased. Image-guided radiation therapy has become essential for radiation therapy in precise and complex treatment plans. In particular, with the introduction of imaging equipment for diagnosis in a linear accelerator, CBCT scanning became possible, which made it possible to calibrate and correct the patient's posture through 3D images. Although more precise reproduction of the patient's posture has become possible, the exposure dose delivered to the patient during the image acquisition process cannot be ignored. Radiation optimization is necessary in the field of radiation therapy, and efforts to reduce exposure are necessary. However, when acquiring 3D CBCT images by changing the imaging conditions to reduce exposure, there should be no image quality or artefacts that would make it impossible to align the patient's position. In this study, Rando phantom was used to scan and evaluate images for each shooting condition. The highest SNR was obtained at 100 kV 80 mA 25 ms F1 filter 180°. As the tube voltage and tube current increased, the noise decreased, and the bowtie filter showed the optimal effect at high tube current. Based on the actual scanned images, it was confirmed that patient alignment was possible under all imaging conditions, and that image-guided radiation therapy for patient alignment was possible under the condition of 70 kV 10 mA 20 ms F0 filter 180°, which showed the lowest SNR. In this study, image evaluation was conducted according to the imaging conditions, and low tube voltage, tube current, and small rotation angle scan are expected to be effective in reducing radiation exposure. Based on this, the patient's exposure dose should be kept as low as possible during CBCT imaging.