• Title/Summary/Keyword: Bovine tissues

Search Result 176, Processing Time 0.025 seconds

Skin elasticity improvement effect of Young persimmon and Heated young persimmon by decreased Advanced glycation end products(AGEs) (떫은감과 포제 떫은감의 최종당화산물 생성 억제를 통한 피부 탄력 개선 효과)

  • Kim, Soo Hyun;Lee, AhReum;Kim, SuJi;Kim, Kyeong Jo;Kwon, Ojun;Choi, Joon Young;Koo, Jin Suk;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.32 no.4
    • /
    • pp.17-24
    • /
    • 2017
  • Objectives : Advanced glycation end products (AGEs) is bind formation of glucose and protein. Acceleration of AGE formation during hyperglycemia is associated with the pathogenesis of diabetic complications and causes kidney and skin damage. The aim of this study was investigated the AGEs inhibitory activity and antioxidant activity of water extracts from young persimmon (YP) and heated young persimmon (HYP). Methods : Paeoniae Radix Alba (YP) is prepared by heating with 30% ethanol. AGEs formation inhibitory activities of YP and HYP measured using bovine serum albumin. To evaluate the protective effects of YP and HYP in diabetic rats induced with streptozotocin (STZ) and methyl glyoxal (MGO), SD rats were distributed into four groups; normal mice (Nor), AGEs-induced rats (Con), AGEs-induced rats treated with 100 mg/kg YP (YP), AGEs-induced rats treated with 100 mg/kg heated YP (HYP) for 3weeks. Heated young persimmon respectively decrease AGEs construction. Results : YP and HYP administration inhibited the biomarkers of AGEs in serum, kidney and skin tissues. AGE-induced rats revealed that the significant decreased collagen however, heat processing methods of young persimmon up regulated inhibits AGEs-induced collagen decrease. The expressions of AGEs were decreased in YP and HYP treated group compared with the control group in tissues. It specifies that HYP has potential to serve as a positive regulator of via AGEs path way. Conclusion : It has proposed that may have an improvement effect on diabetic complications, heated young persimmon has AGEs inhibitory excellent activities and antioxidant effect.

Regulation of Fat and Fatty Acid Composition in Beef Cattle

  • Smith, Stephen B.;Gill, Clare A.;Lunt, David K.;Brooks, Matthew A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1225-1233
    • /
    • 2009
  • Fat composition of beef, taken here to mean marbling, can be manipulated by time on feed, finishing diet, and breed type. These three factors also strongly influence the fatty acid composition of beef. Both the amount of marbling and the concentration of monounsaturated fatty acids (MUFA) increase with time on feed in grain-fed and pasture-fed cattle, but much more dramatically in grain-fed cattle. High-concentrate diets stimulate the activity of adipose tissue stearoyl-CoA desaturase (SCD), which is responsible for the conversion of saturated fatty acids (SFA) to their $\Delta{9}$ desaturated counterparts. Also, grain feeding causes a depression in ruminal pH, which decreases those populations of ruminal microorganisms responsible for the isomerization and hydrogenation of polyunsaturated fatty acids (PUFA). The net result of elevated SCD activity in marbling adipose tissue and depressed ruminal isomerization/hydrogenation of dietary PUFA is a large increase in MUFA in beef over time. Conversely, pasture depresses both the accumulation of marbling and SCD activity, so that even though pasture feeding increases the relative concentration of PUFA in beef, it also increases SFA at the expense of MUFA. Wagyu and Hanwoo cattle accumulate large amounts of marbling and MUFA, and Wagyu cattle appear to be less sensitive to the effects of pastures in depressing overall rates of adipogenesis and the synthesis of MUFA in adipose tissues. There are small differences in fatty acid composition of beef from Bos indicus and Bos taurus cattle, but diet and time on feed are much more important determinants of beef fat content and fatty acid composition than breed type.

N-oleoyl-D-erythro-sphingosine-based Analysis of Ceramide by High Performance Liquid Chromatography and Its Application to Determination in Diverse Biological Samples

  • Lee, Youn-Sun;Choi, Heon-Kyo;Yoo, Jae-Myung;Choi, Kyong-Mi;Lee, Yong-Moon;Oh, Sei-Kwan;Kim, Tack-Joong;Yun, Yeo-Pyo;Hong, Jin-Tae;Okino, Nozomu;Ito, Makoto;Yoo, Hwan-Soo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.273-281
    • /
    • 2007
  • Ceramide is involved in cell death as a lipid mediator of stress responses. In this study, we developed an improved method of ceramide quantification based on added synthetic ceramide and thin layer chromatography (TLC) separation, and applied to biological samples. Lipids were extracted from samples spiked with N-oleoyl-D-erythro-sphingosine ($C_{17}$ ceramide) as an internal standard. Ceramide was resolved by TLC, complexed with fatty-acidfree bovine serum albumin (BSA), and deacylated by ceramidase (CDase). The released sphingosine was derivatized with o-phthalaldehyde (OPA) and measured by high performance liquid chromatography (HPLC). The limit of detection for ceramide was about 1-2 pmol and the lower limit of quantification was 5 pmol. Ceramide recovery was approximately 86-93%. Ceramide concentrations were determined in biological samples including cultured cells, mouse tissues, and mouse and human plasma. TLC separation of ceramide provides HPLC chromatogram with a clean background without any interfering peaks and the enhanced solubility of ceramide by BSAceramide complex leads to the increased deacylation of ceramide. The use of an internal standard for the determination of ceramide concentration in these samples provides an accurate and reproducible analytical method, and this method can be applicable to diverse biological samples.

Expressional Profiling of Telomerase and Telomere-Associated Molecules in the Rat Testis and Seminal Vesicle during Postnatal Developmental Period

  • Seo, Hee-Jung;Lee, Seong-Kyu;Baik, Haing-Woon;Cheon, Yong-Pil;Chun, Tae-Hoon;Choi, In-Ho;Lee, Ki-Ho
    • Journal of Animal Science and Technology
    • /
    • v.53 no.3
    • /
    • pp.195-202
    • /
    • 2011
  • Maintenance of adequate telomere length in developing cells is the most important concern to preserve the integrity of the genome. The length of telomere is strictly regulated by numerous telomere-binding proteins and/or interacting factors. Even though the expression of telomerase in the male reproductive tract has been characterized, developmental expressional profiling of telomerase and other telomere-associated proteins has not been determined in detail. The present study was attempted to examine expression patterns of catalytic subunit (Tert) and RNA component (Terc) of telomerase and two telomerase associated factors, telomerase associated protein 1 (Tep1) and TERF1 (TRF1) interacting nuclear factor 2 (Tinf2) in the testis and seminal vesicle of male rat during postnatal development. The real-time PCR analysis was utilized to quantify mRNA expression of molecules. The abundance of Tep1 mRNA in the testis and seminal vesicle was the highest at 5 months of age. Expressional fluctuation of Tinf2 during postnatal development was found in the testis, while expression of Tinf2 in the seminal vesicle was gradually increased until 5 months of age and then significantly decreased later. mRNA level of Tert gene in the testis was significantly increased at the adult and the elder, while the highest expression of Tert gene in the seminal vesicle was found at 5 months of age. Expression of Terc transcript in the testis and seminal vesicle was the highest at 5 months of age, followed by significant reduction at 1 and 2 years of ages. Such differential gene expression of telomere-associated factors and telomerase components in different male reproductive tissues during postnatal development indicates that maintenance of telomere length would be regulated in tissue- and/or age-specific manners.

Effects of Knockout Serum Replacement in the Culture Medium on the Proliferation of Porcine Fetal Fibroblasts In Vitro

  • Kim, Eun-Ju;Park, Jung-Joo;Choi, Young-Ju;Park, Sang Kyu;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Human fibroblasts that maintain the structural integrity of connective tissues by secreting precursors of the extracellular matrix are typically cultured with serum. However, there are potential disadvantages of the use of serum including unnatural interactions between the cells and the potential for exposure to animal pathogens. To prevent the possible influence of serum on fibroblast cultures, we devised a serum-free growth method and present in vitro data that demonstrate its suitability for growing porcine fetal fibroblasts. These cells were grown under four different culture conditions: no serum (negative control), 10% fetal bovine serum (FBS, positive control), 10% knockout serum replacement (KSR) and 20% KSR in the medium. The proliferation rates and viabilities of the cells were investigated by counting the number of cells and trypan blue staining, respectively. The 10% FBS group showed the largest increase in the total number of cells ($1.09\;{\times}\;10^5\;cells/ml$). In terms of the rate of viable cells, the results from the KSR supplementation groups (20% KSR:64.7%; 10% KSR: 80.6%) were similar to those from the 10% FBS group (68.5%). Moreover, supplementation with either 10% ($3.0\;{\times}\;10^4\;cells/ml$) or 20% KSR ($4.8\;{\times}\;10^4\;cells/ml$) produced similar cell growth rates. In conclusion, although KSR supplementation produces a lower cell proliferation rate than FBS, this growth condition is more effective for obtaining an appropriate number of viable porcine fetal fibroblasts in culture. Using KSR in fibroblast culture medium is thus a viable alternative to FBS.

Stimulation of Cell Growth by Erythropoietin in RAW264.7 Cells: Association with AP-1 Activation

  • Seong Seu-Run;Lee Jae-Woong;Lee Yong-Kyoung;Kim Tae-Il;Son Dong-Ju;Moon Dong-Cheol;Yun Young-Won;Yoon Do-Young;Hong Jin-Tae
    • Archives of Pharmacal Research
    • /
    • v.29 no.3
    • /
    • pp.218-223
    • /
    • 2006
  • Erythropoietin (EPO), a hematopoietic factor, is required for normal erythrocyte developments, but it has been demonstrated to have many other functions, and its receptor is localized in other tissues. In the present study, we investigated whether EPO can promote other cell proliferation and possible molecular mechanisms. EPO restored the inhibition of the RAW264.7 and PC12 cell growth by fetal bovine serum (FBS) withdrawal in a dose dependent manner, but not that of other cell types tested. The restoring effect of EPO was completed when the RAW264.7 cells were cultured in the medium containing as low as 3% of FBS, and 10 U/mL EPO could replace FBS. The restoring effect of EPO in the RAW264.7 cells was associated with the increased of c-Fos and c-Jun expression as well as AP-1 activation. These data demonstrate that EPO can stimulate RAW264. 7 cell as well as PC12 cell growth even when the cells were cultured without FBS or in the presence of small amounts of FBS in the medium, and this stimulating effect is associated with the activation of AP-1 transcription factor.

Effects Of Minocycline And $TGF-{\beta}1$ On Human Gingival Fibroblasts And Periodontal Ligament Cells In Vitro (Minocycline 및 $TGF-{\beta}1$이 배양 인체 치은섬유모세포와 치주인대세포에 미치는 영향)

  • Yoon, Dong-Hwan;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.188-201
    • /
    • 1996
  • One of the initial events required for periodontal regeneration is the attachment, spreading and proliferation of fibroblasts at the healing sites. These have been reported that minocycline stimulates the attachment of gingival fibroblasts and periodontal ligament cells and $TGF-{\beta}1$ enhances the proliferation of periodontal ligament cells. The purpose of this study was to evaluate and confirm the effect of minocycline and $TGF-{\beta}1$ on human gingival fibroblasts and periodontal ligament cells. That gingival fibroblasts and periodontal ligament cells used in this study were obtained from the explants of healthy periodontal ligaments and gingival tissues of extracted 3rd molars or premolar teeth extracted from the patients with orthodontic treatment. The cells were cultured in ${\alpha}-MEM$(minimal essential medium) supplemented with antibiotics and FBS(fetal bovine serum) at $37^{\circ}C$ in a humidified atmosphere of 5% carbon dioxide-95% air. Cells were used between the 5th to 8th passage in this study. The attachment and activity of both cells were evaluated by MTT assay. The results were as follows: 1. Maximum gingival fibroblast attachment was seen at a $50{\mu}g/ml$ dose of minocycline, while maximum periodontal ligament cell attachment was seen at a $100{\mu}g/ml$, and exposure of both cells to minocycline above maximal attachment dose results in a decline from maximum attachment. 2. The activity values of both cells tested minocycline were below to the control activity values at all concentrations. 3. The attachment values of both cells tested $TGF-{\beta}1$ were below or similar to control attachment values. On the above the findings, minocycline stimulated the cell attachment of gingival fibroblasts and periodontal ligament cells and $TGF-{\beta}1$ enhances the cell activity of periodontal ligament cells.

  • PDF

The Comparison of the Effects on the Regeneration with Xenografts on the Furcation Involvement in Beagle Dogs (성견 치근 이개부 병소에서 이종골 이식재의 치주조직 재생에 미치는 영향에 대한 비교 연구)

  • Cho, Jin-Sang;Kim, Jong-Yeo;Chung, Chin-Hyung;Yim, Sung-Bin
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.277-287
    • /
    • 2000
  • For the regeneration of osseous defect on the furcation area, autogeneous bone graft has been primarily used. But it has the limitation of donor site, additive surgical operation etc. Recently anorganic xenogenic bone graft materials of removing all organic components are commonly used for the regeneration of periodontal defects. This study was the comparison of the effect on the regeneration with two types xenografts($Bio-oss^{(R)}$ and Ca-P thin coated Bovine bone powder) on the furcation involvement in Beagle dogs. After surgically induced chronic periodontitis in bifurcation area of premolar, $Bio-oss^{(R)}$ and Ca-P BBP were grafted on the osseous defects. Tissue blocks including defects with soft tissues were harvested following a four-& eight-week healing interval and prepared for histologic analysis. The results of this study were as follows: 1. $Bio-oss^{(R)}$ group: there were significant differences among the $Bio-oss^{?}$ group at 4weeks and 8weeks, but the control group had various appearances : new bone formation, resorption of graft materials by multinuclear giant cells, connective tissue cells intervention in the bone graft sites etc. 2. Ca-P BBP group: lots of new bone formation were observed but the arrangement of periodontal ligament was not completed at 4weeks. New bone were replaced mature bone and the periodontal ligaments showed the functional arrangement at 8weeks. 3. By reason of undergrowing the epithelium within the osseous defects, new bone formation was not happened in the upper area of bifurcation in $Bio-oss^{(R)}$ group. 4. In Ca-P BBP group, epithelial undergrowth was not seen and generally showed much more new bone formation. 5. Ca-P BBP group showed the osteocyte-like cells at the inner portion of the graft materials 6. Both groups were similar to resorptive appearances of graft materials, but Ca-P BBP group had the better effects of osteoconduction.

  • PDF

조류의 다능성 생식세포주 확립 및 분화 특성에 관한 연구

  • 박태섭;한재용
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2001.11a
    • /
    • pp.40-46
    • /
    • 2001
  • The use of pluripotent stem cells has tremendous advantages for various purposes but these cell lines with proven germ-line transmission have been completely established only in the mouse. Embryonic germ (EG) cell lines are also pluripotent and undifferentiated stem cells established from primordial germ cells (PGCs). This study was conducted to establish and characterize the chicken EG cells derived from gonadal primordial germ cells. We isolated gonadal PGCs from 5.5-day-old (stage 28) White leghorn (WL) embryos and established chicken EG cells lines with EG culture medium supplemented with human stem cell factor (hSCF), murine leukemia inhibitory factor (mLIF), bovine basic fibroblast growth factor (bFGF), human interleukin-11 (hIL-11), and human insulin-like growth factor-I (hIGF-I). These cells grew continuously for 4 months (10 passages) on a feeder layer of mitotically active chicken embryonic fibroblasts. These cells were characterized by screening with the Periodic acid-Shiff's reaction, anti-SSEA-1 antibody, and a proliferation assay after several passages. As the results, the chicken EG cells maintained characteristics of undifferentiated stem cells as well as that of gonadal PGCs. When cultured in suspension, the chicken EG cells successfully formed an embryoid body and differentiated into a variety of cell types when re-seeded onto culture dish. The chicken EG cells were injected into blastodermal layer at stage X and dorsal aorta of recipient embryo at stage 14 (incubation of 53hrs) and produced chimeric chickens with various differentiated tissues derived from the EG cells. The germline chimeras were also successfully induced by using EG cells. Thus, Chicken EG cells will be useful for the production of transgenic chickena and for studies of germ cell differentiation and genomic imprinting.

  • PDF

Microbiological Assay for the Detection of Chloramphenicol in Meat and Milk (식육 및 우유 중 클로람페니콜의 미생물학적 검출법에 관한 연구)

  • 손성완;조병훈;진남섭;박종명;박근식
    • Journal of Food Hygiene and Safety
    • /
    • v.8 no.4
    • /
    • pp.215-223
    • /
    • 1993
  • Chloramphenicol (CAP) is a very effective broad-spectrum antibiotic which had been widely used in animal production. However, the drug is not approved in many countries for use in food-producing animals because of its potential toxicity and the possibility of residues in food products. In this study, a modified microbiological assay was developed for the sensitive detection of CAP residues in meat and milk. The method was characterized by the extraction of CAP with ethyl acetate, addition of $0.15\;\mu\textrm{g}$ oxytetracycline/ml in the phosphate buffer diluent (pH 6.0), a luteus ATCC 9341. The lowest levels of CAP detected in muscle tissues and milk were $0.025\;\mu\textrm{g}/ml\;and\;0.05\;\mu\textrm{g}/g$, respectively. Recovery rates free CAP from milk were 68.5%, from bovine muscle 65.1%, from swine muscle 63.8%, and from chicken muscle 59.4%, respectively, and the coefficients of variation were 1.8~15.1%. The results showed that the detection limits of CAP residues in animal products could significantly be improved by the modified microbiological assay than the conventional ones.

  • PDF