• Title/Summary/Keyword: Bovine bone

Search Result 248, Processing Time 0.024 seconds

Bone cement grafting increases implant primary stability in circumferential cortical bone defects

  • Shin, Seung-Yun;Shin, Seung-Il;Kye, Seung-Beom;Chang, Seok-Woo;Hong, Jongrak;Paeng, Jun-Young;Yang, Seung-Min
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2015
  • Purpose: Implant beds with an insufficient amount of cortical bone or a loss of cortical bone can result in the initial instability of a dental implant. Thus, the objective of this study was to evaluate the effect of bone cement grafting on implant initial stability in areas with insufficient cortical bone. Methods: Two different circumferential defect depths (2.5 mm and 5 mm) and a control (no defect) were prepared in six bovine rib bones. Fourteen implants of the same type and size ($4mm{\pm}10mm$) were placed in each group. The thickness of the cortical bone was measured for each defect. After the implant stability quotient (ISQ) values were measured three times in four different directions, bone cement was grafted to increase the primary stability of the otherwise unstable implant. After grafting, the ISQ values were measured again. Results: As defect depth increased, the ISQ value decreased. In the controls, the ISQ value was $85.45{\pm}3.36$ ($mean{\pm}standard$ deviation). In circumferential 2.5-mm and 5-mm defect groups, the ISQ values were $69.42{\pm}7.06$ and $57.43{\pm}6.87$, respectively, before grafting. These three values were significantly different (P<0.001). After grafting the bone cement, the ISQ values significantly increased to $73.72{\pm}8.00$ and $67.88{\pm}10.09$ in the 2.5-mm and 5.0-mm defect groups, respectively (P<0.05 and P<0.001). The ISQ value increased to more than double that before grafting in the circumferential 5-mm defect group. The ISQ values did not significantly differ when measured in any of the four directions. Conclusions: The use of bone cement remarkably increased the stability of the implant that otherwise had an insufficient level of stability at placement, which was caused by insufficient cortical bone volume.

A change of sinus floor level related to the amount of grafted material after bone added osteotome sinus floor elevation (BAOSFE) technique: A radiographic retrospective study (상악동저 거상술에서 이식재 양에 따른 이식골 높이 변화에 대한 방사선학적 평가)

  • Lee, Ji-Eun;Park, So-Min;Lee, Jong-Bin;Pang, Eun-Kyoung
    • The Journal of the Korean dental association
    • /
    • v.55 no.11
    • /
    • pp.756-765
    • /
    • 2017
  • Purpose: The purpose of this article is to evaluate a change o bone level on the sinus floor by a bone added osteotome sinus floor elevation (BAOSFE) technique, according to the amount of deproteinized bovine bone mineral (DBBM). And Changes in augmented bone height after BAOSFE procedure were also assessed for 6 months after the implant procedure. Materials and Methods: Forty eight single implants were placed in the posterior maxilla using BAOSFE technique. The implantation sites were classified into two groups according to the amount of grafted DBBM, 0.25 group (0.25g) and 0.5 group (0.5 g). Panoramic views or cone-beam computed tomography (CBCT) were taken at the time of implant placement with BAOSFE and after at least 6 months to assess the bone level changes in the elevated sites with DBBM. Results: Alveolar bone level around all implants was stable clinically and radiographically during the follow-up. Mean augmented bone height was $5.21{\pm}0.94mm$ in 0.25 group and $6.92{\pm}1.19mm$ in 0.5 group. Statistically significant difference in augmented bone height was found in the comparison between the 0.25 group and 0.5 group at the time of surgery. There was a positive correlation between the length of the implant protruding into the maxillary sinus and the augmented bone height. After 6 months, mean reduction of augmented bone height was $0.50{\pm}0.34mm$ in 0.25 group and $0.41{\pm}0.30mm$ in 0.5group. There was no specific correlation between the reduction of augmented bone height and amount of grafted DBBM. Conclusion: Within the limit of this study, the amount of grafting materials and the protrusion length of implant into the maxillary sinus affect the amount of the augmented bone height.

  • PDF

The Effects of Prostaglandin and Dibutyryl cAMP on Osteoblastic Cell Activity and Osteoclast Generation (Prostaglandin과 Dibutyryl cAMP가 조골세포의 활성과 파골세포 형성에 미치는 영향)

  • Mok, Sung-Kyu;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.448-468
    • /
    • 1996
  • To maintain its functional integrity, bone is continuously remodelled by a process involving resorption by osteoeclasts and formation by osteoblasts, In order to respond to changes in the physical environment or to trauma with the relevant action, this process is strictly regulated by locally synthesized or systemic fators, Prostaglandin $E_2(PGE_2$) is perhaps one of the best studied factors, having been known to affect bone cell function for several decades.$PGE_2$ has both anabolic and catabolic activities. Excess of $PGE_2$ has been implicated in a number of pathological states associated with bone loss in a number of chronic inflammatory conditions such as periodontal disease and rheumatoid arthritis. $PGE_2$ and other arachidonic acid metabolites have been shown to be potent stimulators of osteoclastic bone resorption in organ culture. The anabolic effects of $PGE_2$ were first noticed when an increase in periosteal woven bone formation was seen after the infusion of $PGE_2$ into infants in order to prevent closure of the ductus arteriosus. The cellular basis for the catabolic actions of $PGE_2$ has been well characterized. $PGE_2$increases osteoclast recruitment in bone marrow cell cultures. Also $PGE_2$ has a direct action on osteoclast serving to inhibit activity and can also indirectly activate osteoclast via other cells in the vicinity, presumably osteoblast. The cellular mechanisms for the anabolic actions of $PGE_2$ are not nearly so well understood. The purpose of this paper was to study the effects of $PGE_2$ and dibutyl(DB)cAMP on osteoblastic clone MC3T3El cells and on the generation of osteoclasts from their precursor cells. The effect of $PGE_2$ and DBcAMP on the induction of alkaline phoaphatase(AlP) was investigated in osteoblastic clone MC3T3El cells cultured in medium containing 0.4% fetal bovine serum. $PGE_2$ and DBcAMP stimulated ALP activity and MTT assay in the cells in a dose-dependent manner at concentrations of lO-SOOng/ml. Cycloheximide, protein synthesis inhibitor, inhibited the stimulative effect of $PGE_2$ and DBcAMP on ALP activity in the cells. $PGE_2$also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 500ng/ml. The effect of $PGE_2$ on the generation of osteoclasts was investigated in a coculture system of mouse bone marrow cells with primary osteoblastic cells cultured in media containing 10% fetal bovine serum.After cultures, staining for tartrate-resistant acid phosphatase(TRAP)-marker enzyme of osteoclast was performed. The TRAP(+) multinucleated cells(MNCs), which have 3 or more nuclei, were counted. More TRAP(+) MNCs were formed in coculture system than in control group. $PGE_2(10^{-5}10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in culture. $PGE_2(10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in coculture of osteoblastic clone MC3T3E1 cells This results suggest that $PGE_2$ stimulates the differentiation of osteoblasts and generation of osteoclast, and are involved in bone formation, as well as in bone resorption.

  • PDF

Additional use of autogenous periosteal barrier membrane combined with regenerative therapy in the interproximal intrabony defects: case series (치간부 골내낭의 치주재생치료에서 골막이식의 부가적 사용 증례)

  • Kim, Hyun-Joo;Kim, Hyung-min;Lee, Ju-Youn
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • Regenerative therapy in an interproximal intrabony defect is a challenge due to unaesthetic appearance after surgery. In this article, we introduce a case series of additional use of autogenous periosteal barrier membrane combined with bovine bone mineral and enamel matrix derivative (EMD) in interproximal periodontal intrabony defects to overcome an aforementioned shortcoming. During the periodontal regenerative surgery, autogenous periosteal membrane was additionally adopted besides xenograft material and EMD. Clinical and radiographic examinations were performed before surgery and 6 months after surgical treatment. All clinical parameters were improved and the intrabony defects were resolved on the radiography 6 months after surgery. Moreover, soft tissue esthetics such as the contour of interdental papilla was better than that of conventional regenerative therapy. Periodontal regenerative therapy using several graft materials and bioactive materials was effective in the treatment of periodontal intrabony defect. Moreover, using of autogenous periosteal barrier membrane combined with xenograft and EMD has additional effect for the treatment of an interproximal intrabony defect in terms of augmentation of interdental soft tissue volume.

The effect of implant drilling speed on the composition of particle collected during site preparation

  • Jeong, Chang-Hee;Kim, Do-Young;Shin, Seung-Yun;Hong, Jong-Rak;Kye, Seung-Beom;Yang, Seung-Min
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.253-259
    • /
    • 2009
  • Purpose: This study was aimed to evaluate the effect of implant drilling speed on the composition of particle size of collected bone debris. Methods: $Br{\aa}nemark$ $System^{(R)}$ drills were used to collect bone debris from 10 drilling holes (1 unit) at 1,500 rpm (Group A) and 800 rpm (Group B) in bovine mandible. After separating particles by size into > 500 ${\mu}m$, between 250 ${\mu}m$ and 500 ${\mu}m$, and < 250 ${\mu}m$ fractions, particle wet volume, dry volume, and weight were measured and the proportion of 3 fractions of bone debris to total wet volume, dry volume and weight was calculated as wet volume % , dry volume % and weight %. Results: No significant differences were found between Group A and B in wet volume, dry volume, and weight. However, of >500 ${\mu}m$ fractions, Group B had significantly higher wet volume %(P = 0.0059) and dry volume %(P = 0.0272) than in Group A. Conclusions: The drilling speed influenced the composition of particle size in collected drilling bone debris. The drilling in 800 rpm produced the more percentage of large particles than in 1,500 rpm. However, the drilling speed didn't effect on total volume of and weight of bone debris.

Periodontal regenerative therapy in endo-periodontal lesions: a retrospective study over 5 years

  • Oh, Soram;Chung, Shin Hye;Han, Ji-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.2
    • /
    • pp.90-104
    • /
    • 2019
  • Purpose: The aim of this study was to evaluate clinical and radiographic changes and the survival rate after periodontal surgery using deproteinized bovine bone mineral (DBBM) with 10% collagen or DBBM with a collagen membrane in endo-periodontal lesions. Methods: A total of 52 cases (41 patients) with at least 5 years of follow-up were included in this study. After scaling and root planing with or without endodontic treatment, periodontal regenerative procedures with DBBM with 10% collagen alone or DBBM with a collagen membrane were performed, yielding the DBBM + 10% collagen and DBBM + collagen membrane groups, respectively. Changes in clinical parameters including the plaque index, bleeding on probing, probing pocket depth, gingival recession, relative clinical attachment level, mobility, and radiographic bone gains were evaluated immediately before periodontal surgical procedures and at a 12-month follow-up. Results: At the 12-month follow-up after regenerative procedures, improvements in clinical parameters and radiographic bone gains were observed in both treatment groups. The DBBM + 10% collagen group showed greater probing pocket depth reduction ($4.52{\pm}1.06mm$) than the DBBM + collagen membrane group ($4.04{\pm}0.82mm$). However, there were no significant differences between the groups. Additionally, the radiographic bone gain in the DBBM + 10% collagen group ($5.15{\pm}1.54mm$) was comparable to that of the DBBM + collagen membrane group ($5.35{\pm}1.84mm$). The 5-year survival rate of the teeth with endo-periodontal lesions after periodontal regenerative procedures was 92.31%. Conclusions: This study showed that regenerative procedures using DBBM with 10% collagen alone improved the clinical attachment level and radiographic bone level in endo-periodontal lesions. Successful maintenance of the results after regenerative procedures in endo-periodontal lesions can be obtained by repeated oral hygiene education within strict supportive periodontal treatment.

TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells

  • Jang, Si-Jung;Jeon, Ryoung-Hoon;Kim, Hwan-Deuk;Hwang, Jong-Chan;Lee, Hyeon-Jeong;Bae, Seul-Gi;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2021-2030
    • /
    • 2020
  • Objective: Quantitative polymerase chain reaction (qPCR) has been extensively used in the field of mesenchymal stem cell (MSC) research to elucidate their characteristics and clinical potential by normalization of target genes against reference genes (RGs), which are believed to be stably expressed irrespective of various experimental conditions. However, the expression of RGs is also variable depending on the experimental conditions, which may lead to false or contradictory conclusions upon normalization. Due to the current lack of information for a clear list of stable RGs in bovine MSCs, we conducted this study to identify suitable RGs in bovine MSCs. Methods: The cycle threshold values of ten traditionally used RGs (18S ribosomal RNA [18S], beta-2-microglobulin [B2M], H2A histone family, member Z [H2A], peptidylprolyl isomerase A [PPIA], ribosomal protein 4 [RPL4], succinate dehydrogenase complex, subunit A [SDHA], beta actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs) were validated for their stabilities using three types of RG evaluation algorithms (geNorm, Normfinder, and Bestkeeper). The effect of validated RGs was then verified by normalization of lineage-specific genes (fatty acid binding protein 4 [FABP4] and osteonectin [ON]) expressions during differentiations of bBMMSCs or POU class 5 homeobox 1 (OCT4) expression between bBMMSCs and dermal skins. Results: Based on the results obtained for the three most stable RGs from geNorm (TBP, RPL4, and H2A), Normfinder (TBP, RPL4, and SDHA), and Bestkeeper (TBP, RPL4, and SDHA), it was comprehensively determined that TBP and RPL4 were the most stable RGs in bBMMSCs. However, traditional RGs were suggested to be the least stable (18S) or moderately stable (GAPDH and ACTB) in bBMMSCs. Normalization of FABP4 or ON against TBP, RPL4, and 18S presented significant differences during differentiation of bBMMSCs. However, although significantly low expression of OCT4 was detected in dermal skins compared to that in bBMMSCs when TBP and RPL4 were used in normalization, normalization against 18S exhibited no significance. Conclusion: This study proposes that TBP and RPL4 were suitable as stable RGs for qPCR study in bovine MSCs.

The effect of the Ca-P coated DBBP on osseous regeneration in the rat calvarial bone defect (백서 두개골 결손부에서 Ca-P 피복된 이종골의 골재생 효과)

  • Sung, Sun-Ju;Chung, Hyun-Ju;Park, Hong-Ju;Kim, Ok-Su;Kim, Young-Jun
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.3
    • /
    • pp.475-487
    • /
    • 2004
  • Purpose: This study was aimed to evaluate the effect of the deproteinated bovine bone powder (DBBP) coated with calcium phosphate (Ca-P) on osseous regeneration in the calvarial bone defect of rat. Materials and Methods : The DBBP (Control group, n=6) and the Ca-P coated DBBP (Experimental group, n=6) were grafted in the critical sized calvarial bone defect (8 mm) of rat weighing 250 g. The animals were sacrificed at 1, 4 week. The biopsy specimens were decalcified with 5%formaldehyde and embedded in paraffin. The rats were sacrificed at 8 week received tetracycline (1 week), calcein blue (4 week), and alizarin red (7 week), and the biopsy specimens were taken. The specimens were embedded in methylmethacrylate and ground to 10 ${\mu}m$ thin sections were made. All of the specimens were stained with H & E and Masson's trichrome and examined under light microscope. The specimens at 8 week were examined under fluorescent microscope. Results : In the Control group, the grafted DBBP was surrounded with connective tissue, and osteoblasts were observed partially around the grafted particles at 1 week. At 4 week, some osteoid was observed and, new bone formation was observed at the periphery of grafted materials at 8 week, In the Experimental group, some osteoid was seen at the periphery of the grafted Ca-P coated DBBP at 1 week, and osteoblast and newly formed bone were observed around the grafted materials. At 8 week, newly formed bone was observed at the periphery of the grafted materials. Conclusion: These results suggest that Ca-P coated DBBP group was more and faster than DBBP group in new bone formation and Ca-P could contribute to enhance bone formation in the critical sized calvarial bone defect of rat.

Dependences of Ultrasonic Parameters for Osteoporosis Diagnosis on Bone Mineral Density (골다공증 진단을 위한 초음파 변수의 골밀도에 대한 의존성)

  • Hwang, Kyo Seung;Kim, Yoon Mi;Park, Jong Chan;Choi, Min Joo;Lee, Kang Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Quantitative ultrasound technologies for osteoporosis diagnosis measure ultrasonic parameters such as speed of sound(SOS) and normalized broadband ultrasound attenuation(nBUA) in the calcaneus (heel bone). In the present study, the dependences of SOS and nBUA on bone mineral density in the proximal femur with high risk of fracture were investigated by using 20 trabecular bone samples extracted from bovine femurs. SOS and nBUA in the femoral trabecular bone samples were measured by using a transverse transmission method with one matched pair of ultrasonic transducers with a center frequency of 1.0 MHz. SOS and nBUA measured in the 20 trabecular bone samples exhibited high Pearson's correlation coefficients (r) of r = 0.83 and 0.72 with apparent bone density, respectively. The multiple regression analysis with SOS and nBUA as independent variables and apparent bone density as a dependent variable showed that the correlation coefficient r = 0.85 of the multiple linear regression model was higher than those of the simple linear regression model with either parameter SOS or nBUA as an independent variable. These high linear correlations between the ultrasonic parameters and the bone density suggest that the ultrasonic parameters measured in the femur can be useful for predicting the femoral bone mineral density.

Clinical effects of combination anorganic bovine-derived hydroxyapatite matrix(ABM)/cell binding peptide (P-15) in periodontal intrabony defects (치주 골내낭에서 anorganic bovine-derived hydroxyapatite matrix(ABM)/cell binding peptide(P-15)의 임상적효과)

  • Won, Mi-Sook;Paik, Jeong-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Chai, Jung-Kiu;Kim, Chong-Kwan;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.3
    • /
    • pp.565-576
    • /
    • 2002
  • The ultimate goal of periodontal therapy is the regeneration of periodontal tissue which has been lost due to destructive periodontal disease. To achieve periodontal regeneration, various kinds of methods have been investigated and developed, including guided tissue regeneration and bone graft. Bone graft can be catagorized into autografts, allografts, xenografts, bone substitutes. And materials of all types have different biological activity and the capacity for periodontal regeneration, but ideal graft material has not been developed that fits all the requirement of ideal bone graft material. Intensive research is underway to identity, purify, synthesize a variety biologic modulators that may enhance wound healing and regeneration of lost tissues in periodontal therapy. The present study evaluates the effects of ABM/P-15 on the periodontal regeneration in intrabony defects of human. We used thirty four 2-wall or 3-wall osseous defects in premolars and molars of chronic peridontitis patient that have more than 5mm pockets and more than 3mm in intrabony defect. 12 negative control group underwent flap procedure only, 11 positive control group received DFDBA graft with flap procedure, and 11 experimental group received ABM/P-15 graft with flap procedure. The changes of probing pocket depth, loss of attachment and bone probing depth following 6months after treatment revealed the following results: 1. The changes of probing pocket depth showed a statistically significant decrease between after scaling and 6months after treatment in negative control(2.0${\pm}$0.9mm), positive control(3.0${\pm}$0.9mm), and experimental group (3.4${\pm}$1.5mm) (P<0.01). Significantly more reduction was seen in experimental group compared to negative control group (P<0.05). 2. The changes of loss of attachment showed a statistically significant decrease between after scaling and 6months after treatment in positive control(2.0${\pm}$0.6mm), and experimental group (2.2${\pm}$l.0mm) except negative control group(0.1${\pm}$0.7mm) (P<0.01). Significantly more reduction was seen in both experimental and positive control group compared to negative control group(P<0.05). 3. The changes of bone probing depth showed a statistically significant decrease between after scaling and 6months after treatment in positive control(2.7${\pm}$l.0mm), and experimental group (3.4${\pm}$1.3mm) except negative control(0.l${\pm}$0.9mm) (9<0.01). Significantly more reduction was seen in both experimental and positive control group compared to negative control group (P<0.05). The results suggest that the use of ABM/P-15 in the treatment of periodontal intrabony defects can reduce loss of attachment and bone probing depth more than flap operation only. It suggests that ABM/P-15 may be an effective bone graft material for the regeneration of periodontal tissue in intrabony defects.