• Title/Summary/Keyword: Bovine Mammary Epithelial Cell

Search Result 26, Processing Time 0.025 seconds

Expression of Stat5a Gene in Bovine Mammary Gland and its Effect on Proliferation of Mammary Epithelial Cells

  • Jeon, D.H.;Choi, Y.J.;Baik, M.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1198-1203
    • /
    • 2002
  • To understand molecular mechanisms involved in bovine mammary gland growth, expression of stat5a gene was examined in bovine mammary tissues. We found that stat5a gene was highly induced at pregnant 7 and 8 months compared to virgin mammary tissues. To examine function of bovine stat5a in mammary epithelial cell proliferation, stat5a expression vector was transfected into mammary epithelial HC11 cells. Cell proliferation rate in stat5a gene-transfected cells was 26%, 95% and 85% higher at 24 h, 48 h and 72 h after seeding, respectively, compared to control vector-transfected cells. Results demonstrate that bovine stat5a enhances proliferation of mammary epithelial cells.

The Signaling Mechanism of TGF-β1 Induced Bovine Mammary Epithelial Cell Apoptosis

  • Di, He-Shuang;Wang, Li-Gang;Wang, Gen-Lin;Zhou, Lei;Yang, Yuan-Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.304-310
    • /
    • 2012
  • The present study showed that Transforming growth factor beta 1 (TGF-${\beta}_1$) can induce apoptosis of bovine mammary epithelial cells. This apoptosis was also observed with phosphorylation of Smad2/3 within 0.5-2 h. Afterwards the signal transferred into the nucleus. Moreover, intracellular free $Ca^{2+}$ concentration was significantly elevated as well as Caspase-3 activated and DNA lysised, thereby inducing the programmed cell death. This signaling pathway of TGF-${\beta}_1$ was blocked by SB-431542 ($10^{-2}{\mu}M$) via inhibiting ALK-5 kinase activity, which thus reversed the anti-proliferation and apoptosis effect of TGF-${\beta}_1$ in mammary epithelial cells. These results indicated that TGF-${\beta}_1$ induced apoptosis of bovine mammary epithelial cells through the ALK-5-Smad2/3 pathway, which plays an important role in inhibiting survival of mammary epithelial cells. Moreover, intracellular $Ca^{2+}$ also played a critical role in TGF-${\beta}_1$-induced cell apoptosis.

High-dose lipopolysaccharide induced autophagic cell death in bovine mammary alveolar cells

  • Park, Jin-Ki;Yeo, Joon Mo;Cho, Kwanghyun;Park, Hyun-Jung;Lee, Won-Young
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.169-175
    • /
    • 2022
  • Bovine mammary epithelial (MAC-T) cells are commonly used to study mammary gland development and mastitis. Lipopolysaccharide is a major bacterial cell membrane component that can induce inflammation. Autophagy is an important regulatory mechanism participating in the elimination of invading pathogens. In this study, we evaluated the mechanism underlying bacterial mastitis and mammary cell death following lipopolysaccharide treatment. After 24 h of 50 ㎍/mL lipopolysaccharide treatment, a significant decrease in the proliferation rate of MAC-T cells was observed. However, no changes were observed upon treatment of MAC-T cells with 10 ㎍/mL of lipopolysaccharide for up to 48 h. Thus, upon lipopolysaccharide treatment, MAC-T cells exhibit dose-dependent effects of growth inhibition at 10 ㎍/mL and death at 50 ㎍/mL. Treatment of MAC-T cells with 50 ㎍/mL lipopolysaccharide also induced the expression of autophagy-related genes ATG3, ATG5, ATG10, ATG12, MAP1LC3B, GABARAP-L2, and BECN1. The autophagy-related LC3A/B protein was also expressed in a dose-dependent manner upon lipopolysaccharide treatment. Based on these results, we suggest that a high dose of bacterial infection induces mammary epithelial cell death related to autophagy signals.

Regeneration of Bovine Mammary Gland in Immunodeficient Mice by Transplantation of Bovine Mammary Epithelial Cells Mixed with Matrigel

  • Park, Hyun Jung;Lee, Won Young;Jeong, Ha Yeon;Song, Hyuk
    • International Journal of Stem Cells
    • /
    • v.9 no.2
    • /
    • pp.186-191
    • /
    • 2016
  • Background and Objectives: With the global demand for dairy protein for consumption growing annually, there has been increasing activity in the research field of dairy protein synthesis and production. From a manipulation perspective, it is more difficult to use live cattle for laboratory studies on the production of milk as well as of dairy protein such as casein, as compared with using laboratory animals like rodents. Therefore, we aimed to develop a mouse model of bovine mammary alveolar ducts for laboratory-scale studies. We studied the formation of the bovine mammary gland ductal structure by transplanting the MAC-T bovine alveolar cell line into mice. Methods and Results: MAC-T cells ($1{\times}10^7$) were suspended in Matrigel and injected into the dorsal tissue of 8-week-old male BALB/C nude mice. Histological analysis of tissue dissected from the MAC-T cell-transplanted mice after 6 weeks showed the typical morphology of the tubuloalveolar female gland, as well as glands made up of branching ducts that were surrounded by smooth muscle with small alveoli budding off the ducts. In addition, the epithelial markers CK14 and CK18 were expressed within the duct-like structure. Prolactin was detected in the duct interior in these CK14+ and CK18+ cells but not in the non-transplanted MAC-T cells. Conclusions: These results showed that duct-like tissue had been successfully formed after 6 weeks of transplantation of the CK14+ and CK18+ MAC-T cells into mice dorsal tissue. This mouse model will be a useful tool for further research on the bovine mammary gland.

Hormonal Regulation of Insulin-Like Growth Factor Binding Protein Secretion by a Bovine Mammary Epithelial Cell Line

  • Kim, W.Y.;Chow, J.C.;Hanigan, M.D.;Calvert, C.C.;Ha, J.K.;Baldwin, R.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.233-239
    • /
    • 1997
  • A mammary epithelial cell line (MAC-T) established as a model for lactation was utilized to identify and characterize effects of various hormones upon insulin-like growth factor binding protein secretion. Ligand and immunoblot analyses of conditioned media indicated that insulin-like growth factor binding protein-2 was secreted by MAC-T cells. Insulin-like growth factor-I stimulated insulin-like growth factor binding protein-2 secretion in a dose-dependent manner, but prolactin and bovine somatotropin did not alter insulin-like growth factor binding protein-2 secretion. Insulin increased and cortisol decreased insulin-like growth factor binding protein-2 secretion. Effects of insulin-like growth factor-I on insulin-like growth factor binding protein-2 secretion support previous studies using primary cultures of bovine mammary cells and bovine fibroblasts. Effects of cortisol and insulin on insulin-like growth factor binding protein-2 secretion may be explained by changes in protein synthesis. In addition, supraphysiological doses of insulin can cross-react with the insulin-like growth factor-I receptor and stimulate insulin-like growth factor binding protein-2 secretion. MAC-T cells provide a model system to study mechanisms that regulate local insulin-like growth factor-I bioactivity.

Protective effects of 5-aminolevulinic acid on heat stress in bovine mammary epithelial cells

  • Islam, Md Aminul;Noguchi, Yoko;Taniguchi, Shin;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1006-1013
    • /
    • 2021
  • Objective: Cells have increased susceptibility to activation of apoptosis when suffering heat stress (HS). An effective supplementation strategy to mimic heat-induced apoptosis of bovine mammary epithelial cells (MECs) is necessary to maintain optimal milk production. This study aimed to investigate possible protective effects of the anti-apoptotic activity of 5-aminolevulinic acid (5-ALA) against HS-induced damage of bovine MECs. Methods: Bovine MECs were pretreated with or without 5-ALA at concentrations of 10, 100, and 500 µM for 24 h followed by HS (42.5℃ for 24 h and 48 h). Cell viability was measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with apoptosis, oxidative stress, and endoplasmic reticulum (ER) stress genes. Results: We found that 5-ALA induces cytoprotection via inhibition of apoptosis markers after HS-induced damage. Pretreatment of bovine MECs with 5-ALA resulted in dramatic upregulation of mRNA for nuclear factor erythroid-derived 2-like factor 2, heme oxygenase-1, and NAD(P)H quinone oxidoreductase 1, all of which are antioxidant stress genes. Moreover, 5-ALA pretreatment significantly suppressed HS-induced ER stress-associated markers, glucose-regulated protein 78, and C/EBP homologous protein expression levels. Conclusion: 5-ALA can ameliorate the ER stress in heat stressed bovine MEC via enhancing the expression of antioxidant gene.

Optimizing hormonal and amino acid combinations for enhanced cell proliferation and cell cycle progression in bovine mammary epithelial cells

  • Hyuk Cheol Kwon;Hyun Su Jung;Do Hyun Kim;Jong Hyeon Han;Seo Gu Han;Dong Hyun Keum;Seong Joon Hong;Sung Gu Han
    • Animal Bioscience
    • /
    • v.36 no.11
    • /
    • pp.1757-1768
    • /
    • 2023
  • Objective: The number of bovine mammary epithelial cells (BMECs) is closely associated with the quantity of milk production in dairy cows; however, the optimal levels and the combined effects of hormones and essential amino acids (EAAs) on cell proliferation are not completely understood. Thus, the purpose of this study was to determine the optimal combination of individual hormones and EAAs for cell proliferation and related signaling pathways in BMECs. Methods: Immortalized BMECs (MAC-T) were treated with six hormones (insulin, cortisol, progesterone, estrone, 17β-estradiol, and epidermal growth factor) and ten EAAs (arginine, histidine, leucine, isoleucine, threonine, tryptophan, lysine, methionine, phenylalanine, and valine) for 24 h. Results: Cells were cultured in a medium containing 10% fetal bovine serum (FBS) as FBS supplemented at a concentration of 10% to 50% showed a comparable increase in cell proliferation rate. The optimized combination of four hormones (insulin, cortisol, progesterone, and 17β-estradiol) and 20% of a mixture of ten EAAs led to the highest cell proliferation rate, which led to a significant increase in cell cycle progression at the S and G2/M phases, in the protein levels of proliferating cell nuclear antigen and cyclin B1, cell nucleus staining, and in cell numbers. Conclusion: The optimal combination of hormones and EAAs increased BMEC proliferation by enhancing cell cycle progression in the S and G/2M phases. Our findings indicate that optimizing hormone and amino acid levels has the potential to enhance milk production, both in cell culture settings by promoting increased cell numbers, and in dairy cows by regulating feed intake.

Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells

  • Qi, Lizhi;Yan, Sumei;Sheng, Ran;Zhao, Yanli;Guo, Xiaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.414-421
    • /
    • 2014
  • This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of ${\alpha}s1$-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 ${\mu}M$) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 ${\mu}M$ in a concentration-dependent manner, and the addition of 600 ${\mu}M$ was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

Rapamycin Inhibits Expression of Elongation of Very-long-chain Fatty Acids 1 and Synthesis of Docosahexaenoic Acid in Bovine Mammary Epithelial Cells

  • Guo, Zhixin;Wang, Yanfeng;Feng, Xue;Bao, Chaogetu;He, Qiburi;Bao, Lili;Hao, Huifang;Wang, Zhigang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.11
    • /
    • pp.1646-1652
    • /
    • 2016
  • Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth and metabolism and is sufficient to induce specific metabolic processes, including de novo lipid biosynthesis. Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene and the product of which was thought to be associated with elongation of carbon (C) chain in fatty acids. In the present study, we examined the effects of rapamycin, a specific inhibitor of mTORC1, on ELOVL1 expression and docosahexaenoic acid (DHA, C22:6 n-3) synthesis in bovine mammary epithelial cells (BMECs). We found that rapamycin decreased the relative abundance of ELOVL1 mRNA, ELOVL1 expression and the level of DHA in a time-dependent manner. These data indicate that ELOVL1 expression and DHA synthesis are regulated by mTORC1 in BMECs.

Characterization of rat mammary epithalial cells and expression of gap junctional proteins (랫드 유선 상피 세포의 분리와 gap junction 단백질의 발현 양상)

  • Seo, Min-Soo;Kang, Kyung-Sun;Lee, Yong-Soon
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.649-656
    • /
    • 2003
  • We have a cultured method to grow rat mammary epithelial cells (RMEC) for 1 to 14 days in 1:1 mixture of Dulbecco's Modified Eagle Medium: Nutrient and F-12 (DMEM/F-12) containing 10% fetal bovine serum (FBS), human EGF, insulin, hydrocortisone, human transferrin and $17{\beta}$-estradiol in vitro. We were able to isolate and distinguish two cell types, luminal epithelial cells and myoepithelial cells, from primary clutures of RMEC. Immunocytochemical stains were used to distingusih luminal epithelial cells and myoepithelial cells. Peanut lectin (PNA) was stained in most alveolar epithelail cells and luminal epithelial cells of rats, while Thy-1.1, a maker of potential rat mammary myoepithelial cells, was expressed in myoepithelial cells in the rat. Also, we examined the expression patterns of three types of gap junction proteins, connexin 26 ($C{\times}26$), connexins 32 ($C{\times}32$) and connexin 43 ($C{\times}43$) by immunocytochemistry and western blot analysis. In the cell types, the results show that at the early stage of culture, luminal epithelial cells were increased and these cells were surrounded by myoepithelial cells. At the late stage of culture, luminal epithelial cells were decreased, in contrast myoepithelial cells were increased. In the expression pattern of gap junction, $C{\times}26$ maintained it's expression until day 3, but afterwards gradually decreased in intensity. Expression of $C{\times}32$ remained until day 5, then decreased slightly. $C{\times}43$ gradually increased untill the middle time of culture then decreased in intensity. These results suggest that connexins may be important for the control of growth in rat mammary epithelial cell types.