DOI QR코드

DOI QR Code

Rapamycin Inhibits Expression of Elongation of Very-long-chain Fatty Acids 1 and Synthesis of Docosahexaenoic Acid in Bovine Mammary Epithelial Cells

  • Guo, Zhixin (College of Life Science, Inner Mongolia University) ;
  • Wang, Yanfeng (College of Life Science, Inner Mongolia University) ;
  • Feng, Xue (College of Life Science, Inner Mongolia University) ;
  • Bao, Chaogetu (College of Life Science, Inner Mongolia University) ;
  • He, Qiburi (College of Life Science, Inner Mongolia University) ;
  • Bao, Lili (College of Basic Medical Science, Inner Mongolia Medical University) ;
  • Hao, Huifang (College of Life Science, Inner Mongolia University) ;
  • Wang, Zhigang (College of Life Science, Inner Mongolia University)
  • Received : 2015.08.08
  • Accepted : 2016.01.05
  • Published : 2016.11.01

Abstract

Mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth and metabolism and is sufficient to induce specific metabolic processes, including de novo lipid biosynthesis. Elongation of very-long-chain fatty acids 1 (ELOVL1) is a ubiquitously expressed gene and the product of which was thought to be associated with elongation of carbon (C) chain in fatty acids. In the present study, we examined the effects of rapamycin, a specific inhibitor of mTORC1, on ELOVL1 expression and docosahexaenoic acid (DHA, C22:6 n-3) synthesis in bovine mammary epithelial cells (BMECs). We found that rapamycin decreased the relative abundance of ELOVL1 mRNA, ELOVL1 expression and the level of DHA in a time-dependent manner. These data indicate that ELOVL1 expression and DHA synthesis are regulated by mTORC1 in BMECs.

Keywords

References

  1. Benoit, B., J. Bruno, F. Kayal, M. Estienne, C. Debard, R. Ducroc, and P. Plaisancie. 2015. Saturated and unsaturated fatty acids differently modulate colonic goblet cells in vitro and in rat pups. J. Nutr. 145:1754-1762. https://doi.org/10.3945/jn.115.211441
  2. Carmona-Antonanzas, G., D. R. Tocher, L. Martinez-Rubio, and M. J. Leaver. 2014. Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals. Gene 534:1-9. https://doi.org/10.1016/j.gene.2013.10.040
  3. Duvel, K., J. L. Yecies, S. Menon, P. Raman, A. I. Lipovsky, A. L. Souza, E. Triantafellow, Q. Ma, R. Gorski, and S. Cleaver et al. 2010. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39:171-183. https://doi.org/10.1016/j.molcel.2010.06.022
  4. German, J. B. and C. J. Dillard. 2006. Composition, structure and absorption of milk lipids: A source of energy, fatsoluble nutrients, and bioactive molecules. Crit. Rev. Food Sci. Nutr. 46:57-92. https://doi.org/10.1080/10408690590957098
  5. Hartmann, D., M. S. Wegner, R. A. Wanger, N. Ferreiros, Y. Schreiber, J. Lucks, S. Schiffmann, G. Geisslinger, and S. Grosch. 2013. The equilibrium between long and very long chain ceramides is important for the fate of the cell and can be influenced by co-expression of CerS. Int. J. Biochem. Cell Biol. 45:1195-1203. https://doi.org/10.1016/j.biocel.2013.03.012
  6. Jakobsson, A., R. Westerberg, and A. Jacobsson. 2006. Fatty acid elongases in mammals: Their regulation and roles in metabolism. Prog. Lipid Res. 45:237-249. https://doi.org/10.1016/j.plipres.2006.01.004
  7. Jensen, R. G., A. M. Ferris, and C. J. Lammi-Keefe. 1991. The composition of milk fat. J. Dairy Sci. 74:3228-3243. https://doi.org/10.3168/jds.S0022-0302(91)78509-3
  8. Kihara, A. 2012. Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 152:387-395. https://doi.org/10.1093/jb/mvs105
  9. Kozawa, S., A. Honda, N. Kajiwara, Y. Takemoto, T. Nagase, H. Nikami, Y. Okano, S. Nakashima, and N. Shimozawa. 2011. Induction of peroxisomal lipid metabolism in mice fed a highfat diet. Mol. Med. Rep. 4:1157-1162.
  10. Laplante, M. and D. M. Sabatini. 2012. mTOR signaling in growth control and disease. Cell 149:274-293. https://doi.org/10.1016/j.cell.2012.03.017
  11. Lamming, D. W. and D. M. Sabatini. 2013. A central role for mTOR in lipid homeostasis. Cell Metab. 18:465-469. https://doi.org/10.1016/j.cmet.2013.08.002
  12. Laplante, M. and D. M. Sabatini. 2013. Regulation of mTORC1 and its impact on gene expression at a glance. J. Cell Sci. 126:1713-1719. https://doi.org/10.1242/jcs.125773
  13. Li, N., F. Zhao, C. Wei, M. Liang, N. Zhang, C. Wang, Q. Z. Li, and X. J. Gao. 2014. Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells. Int. J. Mol. Sci. 15:16998-17013. https://doi.org/10.3390/ijms150916998
  14. Lodhi, I. J., X. Wei, and C. F. Semenkovich. 2011. Lipoexpediency: de novo lipogenesis as a metabolic signal transmitter. Trends Endocrinol. Metab. 22:1-8. https://doi.org/10.1016/j.tem.2010.09.002
  15. McFadden, J. W. and B. A. Corl. 2009. Activation of AMPactivated protein kinase (AMPK) activation of inhibits fatty acid synthesis in bovine mammary epithelial cells. Biochem. Biophys. Res. Commun. 390:388-393. https://doi.org/10.1016/j.bbrc.2009.09.017
  16. Nogalski, Z., M. Wronski, M. Sobczuk-Szul, M. Mochol, and P. Pogorzelska. 2012. The effect of body energy reserve mobilization on the fatty acid profile of milk in high-yielding cows. Asian Australas J. Anim. Sci. 25:1712-1720. https://doi.org/10.5713/ajas.2012.12279
  17. Ofman, R. and I. M. E. Dijkstra. 2010. The role of ELOVL1 in very long-chain fatty acid homeostasis and X-linked adrenoleukodystrophy. EMBO Mol. Med. 2:90-97. https://doi.org/10.1002/emmm.201000061
  18. Ohno, Y., S. Suto, M. Yamanaka, Y. Mizutani, S. Mitsutake, Y. Igarashi, T. Sassa, and A. Kihara. 2010. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc. Natl. Acad. Sci. USA. 107:18439-18444. https://doi.org/10.1073/pnas.1005572107
  19. Qi, L., S. Yan, R. Sheng, Y. Zhao, and X. Guo. 2014. Effects of saturated long-chain fatty acid on mRNA expression of genes associated with milk fat and protein biosynthesis in bovine mammary epithelial cells. Asian Australas. J. Anim. Sci. 27:414-421. https://doi.org/10.5713/ajas.2013.13499
  20. Sassa, T. and A. Kihara. 2014. Metabolism of very long-chain fatty acids: Genes and pathophysiology. Biomol. Ther. (Seoul) 22:83-92. https://doi.org/10.4062/biomolther.2014.017
  21. Sassa, T., T. Wakashima, Y. Ohno, and A. Kihara. 2014. Lorenzo's oil inhibits ELOVL1 and lowers the level of sphingomyelin with a saturated very long-chain fatty acid. J. Lipid Res. 55:524-530. https://doi.org/10.1194/jlr.M044586
  22. Soliman, G. A. 2011. The integral role of mTOR in lipid metabolism. Cell Cycle. 10:861-862. https://doi.org/10.4161/cc.10.6.14930
  23. Tvrdik, P., R. Westerberg, S. Silve, A. Asadi, A. Jakobsson, B. Cannon, G. Loison, and A. Jacobsson. 2000. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J. Cell Biol. 149:707-718. https://doi.org/10.1083/jcb.149.3.707
  24. Wang, Q., M. Tikhonenko, S. N. Bozack, T. A. Lydic, L. Yan, N. L. Panchy, K. M. Mcsorley, M. S. Faber, Y. Yan, M. E. Boulton, M. B. Grant, and J. V. Busik, 2014a. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PLoS One. 9:e95028. doi: 10.1371/journal.pone.0095028. eCollection 2014.
  25. Wang, X., L. Xiu, Q. Hu, X. Cui, B. Liu, L. Tao, T. Wang, J. Wu, Y. Chen, and Y. Chen. 2013. Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response to in vitro infection with staphylococcus aureus stains. PLoS One. 8:e82117. https://doi.org/10.1371/journal.pone.0082117
  26. Wang, Y., D. Botolin, J. Xu, B. Christian, E. Mitchell, B. Jayaprakasam, M. G. Nair, J. M. Peters, J. V. Busik, L. K. Olson, and D. B. Jump. 2006. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J. Lipid Res. 47:2028-2041. https://doi.org/10.1194/jlr.M600177-JLR200
  27. Wang, Z., X. Hou, B. Qu, J. Wang, X. Gao, and Q. Li. 2014b. Pten regulates development and lactation in the mammary glands of dairy cows. PLoS One. 9:e102118. doi: 10.1371/journal.pone.0102118. eCollection 2014.
  28. Xue, X., C. Y. Feng, S. M. Hixson, K. Johnstone, D. M. Anderson, C. C. Parrish, and M. L. Rise. 2014. Characterization of the fatty acyl elongase (ELOVL) gene family, and hepatic elovl and delta-6 fatty acyl desaturase transcript expression and fatty acid responses to diets containing camelina oil in Atlantic cod (Gadus morhua). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 175:9-22. https://doi.org/10.1016/j.cbpb.2014.06.005
  29. Yu, C., C. Luo, B. Qu, N. Khudhair, X. Gu, Y. Zang, C. Wang, N. Zhang, Q. Li, and X. Gao. 2014. Molecular network including eIF1AX, RPS7, and 14-3-$3{\gamma}$ regulates protein translation and cell proliferation in bovine mammary epithelial cells. Arch. Biochem. Biophys. 564:142-155. https://doi.org/10.1016/j.abb.2014.09.014
  30. Zhang, X., F. Zhao, Y. Si, Y. Huang, C. Yu, C. Luo, N. Zhang, Q. Li, and X. Gao. 2014. $GSK3{\beta}$ regulates milk synthesis in and proliferation of dairy cow mammary epithelial cells via the mTOR/S6K1 signaling pathway. Molecules 19:9435-9452. https://doi.org/10.3390/molecules19079435

Cited by

  1. mTORC2 Regulates Lipogenic Gene Expression through PPARγ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/5196028
  2. The mTORC1/4EBP1/PPARγ Axis Mediates Insulin-Induced Lipogenesis by Regulating Lipogenic Gene Expression in Bovine Mammary Epithelial Cells vol.67, pp.21, 2019, https://doi.org/10.1021/acs.jafc.9b01411
  3. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism vol.20, pp.23, 2016, https://doi.org/10.3390/ijms20235854
  4. MTOR‐initiated metabolic switch and degeneration in the retinal pigment epithelium vol.34, pp.9, 2016, https://doi.org/10.1096/fj.202000612r
  5. Milk fat: opportunities, challenges and innovation vol.61, pp.14, 2016, https://doi.org/10.1080/10408398.2020.1778631