• Title/Summary/Keyword: Bounded

Search Result 2,235, Processing Time 0.031 seconds

Boundary-RRT* Algorithm for Drone Collision Avoidance and Interleaved Path Re-planning

  • Park, Je-Kwan;Chung, Tai-Myoung
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1324-1342
    • /
    • 2020
  • Various modified algorithms of rapidly-exploring random tree (RRT) have been previously proposed. However, compared to the RRT algorithm for collision avoidance with global and static obstacles, it is not easy to find a collision avoidance and local path re-planning algorithm for dynamic obstacles based on the RRT algorithm. In this study, we propose boundary-RRT*, a novel-algorithm that can be applied to aerial vehicles for collision avoidance and path re-planning in a three-dimensional environment. The algorithm not only bounds the configuration space, but it also includes an implicit bias for the bounded configuration space. Therefore, it can create a path with a natural curvature without defining a bias function. Furthermore, the exploring space is reduced to a half-torus by combining it with simple right-of-way rules. When defining the distance as a cost, the proposed algorithm through numerical analysis shows that the standard deviation (σ) approaches 0 as the number of samples per unit time increases and the length of epsilon ε (maximum length of an edge in the tree) decreases. This means that a stable waypoint list can be generated using the proposed algorithm. Therefore, by increasing real-time performance through simple calculation and the boundary of the configuration space, the algorithm proved to be suitable for collision avoidance of aerial vehicles and replanning of local paths.

Finite-time Adaptive Non-singular Terminal Sliding-mode Control for Robot Manipulator (로봇 매니퓰레이터에 적용을 위한 유한한 시간 적응 비특이 터미널 슬라이딩 모드 제어 기법)

  • Baek, Jae-Min;Yun, Kyeong-Soo;Kang, Min-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.4
    • /
    • pp.137-143
    • /
    • 2021
  • We propose an adaptive non-singular terminal sliding-mode control for the fast finite-time convergence (FANTSMC) in robot manipulator. The proposed FANTSMC approach is developed to be applied without singularity in robot manipulator, which has a new pole-placement control with the non-singular terminal sliding variable while generating the desirable control torque. Moreover, the switching gain is designed to suppress the time-delayed estimation error appropriately, which aims at providing the high robust tracking performance. Also, the proposed one employs one-sample delayed information to cancel out the system uncertainties and disturbances. For these reasons, it offers strong attraction within the finite time. It is shown that the tracking performance of the proposed FANTSMC approach is guaranteed to be uniformly ultimately bounded through the Lyapunov stability. The effectiveness of the proposed FANTSMC approach is illustrated in simulations, which is compared with that of the up-to-date control approach.

SEMICLASSICAL ASYMPTOTICS OF INFINITELY MANY SOLUTIONS FOR THE INFINITE CASE OF A NONLINEAR SCHRÖDINGER EQUATION WITH CRITICAL FREQUENCY

  • Aguas-Barreno, Ariel;Cevallos-Chavez, Jordy;Mayorga-Zambrano, Juan;Medina-Espinosa, Leonardo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.241-263
    • /
    • 2022
  • We consider a nonlinear Schrödinger equation with critical frequency, (P𝜀) : 𝜀2∆v(x) - V(x)v(x) + |v(x)|p-1v(x) = 0, x ∈ ℝN, and v(x) → 0 as |x| → +∞, for the infinite case as described by Byeon and Wang. Critical means that 0 ≤ V ∈ C(ℝN) verifies Ƶ = {V = 0} ≠ ∅. Infinite means that Ƶ = {x0} and that, grossly speaking, the potential V decays at an exponential rate as x → x0. For the semiclassical limit, 𝜀 → 0, the infinite case has a characteristic limit problem, (Pinf) : ∆u(x)-P(x)u(x) + |u(x)|p-1u(x) = 0, x ∈ Ω, with u(x) = 0 as x ∈ Ω, where Ω ⊆ ℝN is a smooth bounded strictly star-shaped region related to the potential V. We prove the existence of an infinite number of solutions for both the original and the limit problem via a Ljusternik-Schnirelman scheme for even functionals. Fixed a topological level k we show that vk,𝜀, a solution of (P𝜀), subconverges, up to a scaling, to a corresponding solution of (Pinf ), and that vk,𝜀 exponentially decays out of Ω. Finally, uniform estimates on ∂Ω for scaled solutions of (P𝜀) are obtained.

RADIUS CONSTANTS FOR FUNCTIONS ASSOCIATED WITH A LIMACON DOMAIN

  • Cho, Nak Eun;Swaminathan, Anbhu;Wani, Lateef Ahmad
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.353-365
    • /
    • 2022
  • Let 𝓐 be the collection of analytic functions f defined in 𝔻 := {ξ ∈ ℂ : |ξ| < 1} such that f(0) = f'(0) - 1 = 0. Using the concept of subordination (≺), we define $$S^*_{\ell}\;:=\;\{f{\in}A:\;\frac{{\xi}f^{\prime}({\xi})}{f({\xi})}{\prec}{\Phi}_{\ell}(\xi)=1+{\sqrt{2}{\xi}}+{\frac{{\xi}^2}{2}},\;{\xi}{\in}{\mathbb{D}}\}$$, where the function 𝚽(ξ) maps 𝔻 univalently onto the region Ω bounded by the limacon curve (9u2 + 9v2 - 18u + 5)2 - 16(9u2 + 9v2 - 6u + 1) = 0. For 0 < r < 1, let 𝔻r := {ξ ∈ ℂ : |ξ| < r} and 𝒢 be some geometrically defined subfamily of 𝓐. In this paper, we find the largest number 𝜌 ∈ (0, 1) and some function f0 ∈ 𝒢 such that for each f ∈ 𝒢 𝓛f (𝔻r) ⊂ Ω for every 0 < r ≤ 𝜌, and $${\mathcal{L} _{f_0}}({\partial}{\mathbb{D}_{\rho})\;{\cap}\;{\partial}{\Omega}_{\ell}\;{\not=}\;{\emptyset}$$, where the function 𝓛f : 𝔻 → ℂ is given by $${\mathcal{L}}_f({\xi})\;:=\;{\frac{{\xi}f^{\prime}(\xi)}{f(\xi)}},\;f{\in}{\mathcal{A}}$$. Moreover, certain graphical illustrations are provided in support of the results discussed in this paper.

CFD Simulation of NACA 2412 airfoil with new cavity shapes

  • Merryisha, Samuel;Rajendran, Parvathy;Khan, Sher Afghan
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.2
    • /
    • pp.131-148
    • /
    • 2022
  • The paper presents the surface-modified NACA 2412 airfoil performance with variable cavity characteristics such as size, shape and orientation, by numerically investigated with the pre-validation study. The study attempts to improve the airfoil aerodynamic performance at 30 m/s with a variable angle of attack (AOA) ranging from 0° to 20° under Reynolds number (Re) 4.4×105. Through passive surface control techniques, a boundary layer control strategy has been enhanced to improve flow performance. An intense background survey has been carried out over the modifier orientation, shape, and numbers to differentiate the sub-critical and post-critical flow regimes. The wall-bounded flows along with its governing equations are investigated using Reynolds Average Navier Strokes (RANS) solver coupled with one-equational transport Spalart Allmaras model. It was observed that the aerodynamic efficiency of cavity airfoil had been improved by enhancing maximum lift to drag ratio ((l/d) max) with delayed flow separation by keeping the flow attached beyond 0.25C even at a higher angle of attack. Detailed investigation on the cavity distribution pattern reveals that cavity depth and width are essential in degrading the early flow separation characteristics. In this study, overall general performance comparison, all the cavity airfoil models have delayed stalling compared to the original airfoil.

ESTIMATE FOR BILINEAR CALDERÓN-ZYGMUND OPERATOR AND ITS COMMUTATOR ON PRODUCT OF VARIABLE EXPONENT SPACES

  • Guanghui, Lu;Shuangping, Tao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1471-1493
    • /
    • 2022
  • The goal of this paper is to establish the boundedness of bilinear Calderón-Zygmund operator BT and its commutator [b1, b2, BT] which is generated by b1, b2 ∈ BMO(ℝn) (or ${\dot{\Lambda}}_{\alpha}$(ℝn)) and the BT on generalized variable exponent Morrey spaces 𝓛p(·),𝜑(ℝn). Under assumption that the functions 𝜑1 and 𝜑2 satisfy certain conditions, the authors proved that the BT is bounded from product of spaces 𝓛p1(·),𝜑1(ℝn)×𝓛p2(·),𝜑2(ℝn) into space 𝓛p(·),𝜑(ℝn). Furthermore, the boundedness of commutator [b1, b2, BT] on spaces Lp(·)(ℝn) and on spaces 𝓛p(·),𝜑(ℝn) is also established.

New Backstepping-DSOGI hybrid control applied to a Smart-Grid Photovoltaic System

  • Nebili, Salim;Benabdallah, Ibrahim;Adnene, Cherif
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • In order to overcome the power fluctuation issues in photovoltaic (PV) smart grid-connected systems and the inverter nonlinearity model problem, an adaptive backstepping command-filter and a double second order generalized Integrators (DSOGI) controller are designed in order to tune the AC current and the DC-link voltage from the DC side. Firstly, we propose to present the filter mathematical model throughout the PV system, at that juncture the backstepping control law is applied in order to control it, Moreover the command filter is bounded to the controller aiming to exclude the backstepping controller differential increase. Additionally, The adaptive law uses Lyapunov stability criterion. Its task is to estimate the uncertain parameters in the smart grid-connected inverter. A DSOGI is added to stabilize the grid currents and eliminate undesirable harmonics meanwhile feeding maximum power generated from PV to the point of common coupling (PCC). Then, guaranteeing a dynamic effective response even under very unbalanced loads and/or intermittent climate changes. Finally, the simulation results will be established using MATLAB/SIMULINK proving that the presented approach can control surely the smart grid-connected system.

On the comparison of mean object size in M/G/1/PS model and M/BP/1 model for web service

  • Lee, Yongjin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2022
  • This paper aims to compare the mean object size of M/G/1/PS model with that of M/BP/1 model used in the web service. The mean object size is one of important measure to control and manage web service economically. M/G/1/PS model utilizes the processor sharing in which CPU rotates in round-robin order giving time quantum to multiple tasks. M/BP/1 model uses the Bounded Pareto distribution to describe the web service according to file size. We may infer that the mean waiting latencies of M/G/1/PS and M/BP/1 model are equal to the mean waiting latency of the deterministic model using the round robin scheduling with the time quantum. Based on the inference, we can find the mean object size of M/G/1/PS model and M/BP/1 model, respectively. Numerical experiments show that when the system load is smaller than the medium, the mean object sizes of the M/G/1/PS model and the M/BP/1 model become the same. In particular, when the shaping parameter is 1.5 and the lower and upper bound of the file size is small in the M/BP/1 model, the mean object sizes of M/G/1/PS model and M/BP/1 model are the same. These results confirm that it is beneficial to use a small file size in a web service.

A Behavior of the Ultrasonically-atomized Kerosene Lifted-flame According to the Position of Ultrasonic Standing-wave Field (정상초음파장의 위치에 따른 초음파 무화 케로신 부상화염의 거동)

  • Chang Han Bae;Jeong Soo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • A study was conducted to scrutinize the behavior of the ultrasonically-atomized kerosene lifted-flame according to the carrier gas flow-rate and position of ultrasonic standing wave (USW). The combustion region of the kerosene-aerosol generated through a slit-jet nozzle was visualized using a DSLR, ICCD, high-speed camera, and Schlieren technique, and the fuel consumption was measured by using a precision balance. As a result, the flame was confined within the region bounded by the USW-field, and the fuel consumption decreased as the position of the USW field increased.

ON SOLVABILITY OF A CLASS OF DEGENERATE KIRCHHOFF EQUATIONS WITH LOGARITHMIC NONLINEARITY

  • Ugur Sert
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.565-586
    • /
    • 2023
  • We study the Dirichlet problem for the degenerate nonlocal parabolic equation ut - a(||∇u||2L2(Ω))∆u = Cb ||u||βL2(Ω) |u|q(x,t)-2 u log |u| + f in QT, where QT := Ω × (0, T), T > 0, Ω ⊂ ℝN, N ≥ 2, is a bounded domain with a sufficiently smooth boundary, q(x, t) is a measurable function in QT with values in an interval [q-, q+] ⊂ (1, ∞) and the diffusion coefficient a(·) is a continuous function defined on ℝ+. It is assumed that a(s) → 0 or a(s) → ∞ as s → 0+, therefore the equation degenerates or becomes singular as ||∇u(t)||2 → 0. For both cases, we show that under appropriate conditions on a, β, q, f the problem has a global in time strong solution which possesses the following global regularity property: ∆u ∈ L2(QT) and a(||∇u||2L2(Ω))∆u ∈ L2(QT ).