• Title/Summary/Keyword: Boundary value technique

Search Result 156, Processing Time 0.028 seconds

SOLUTION OF TENTH AND NINTH-ORDER BOUNDARY VALUE PROBLEMS BY HOMOTOPY PERTURBATION METHOD

  • Mohyud-Din, Syed Tauseef;Yildirim, Ahmet
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • In this paper, we apply homotopy perturbation method (HPM) for solving ninth and tenth-order boundary value problems. The suggested algorithm is quite efficient and is practically well suited for use in these problems. The proposed iterative scheme finds the solution without any discretization, linearization or restrictive assumptions. Several examples are given to verify the reliability and efficiency of the method. The fact that the proposed homotopy perturbation method solves nonlinear problems without using Adomian's polynomials can be considered as a clear advantage of this technique over the decomposition method.

NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Guo, Yingxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • In this paper, we consider the existence of nontrivial solutions for the nonlinear fractional differential equation boundary-value problem(BVP) $-D_0^{\alpha}+u(t)=\lambda[f(t, u(t))+q(t)]$, 0 < t < 1 u(0) = u(1) = 0, where $\lambda$ > 0 is a parameter, 1 < $\alpha$ $\leq$ 2, $D_{0+}^{\alpha}$ is the standard Riemann-Liouville differentiation, f : [0, 1] ${\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is continuous, and q(t) : (0, 1) $\rightarrow$ [0, $+\infty$] is Lebesgue integrable. We obtain serval sufficient conditions of the existence and uniqueness of nontrivial solution of BVP when $\lambda$ in some interval. Our approach is based on Leray-Schauder nonlinear alternative. Particularly, we do not use the nonnegative assumption and monotonicity which was essential for the technique used in almost all existed literature on f.

A boundary radial point interpolation method (BRPIM) for 2-D structural analyses

  • Gu, Y.T.;Liu, G.R.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.535-550
    • /
    • 2003
  • In this paper, a boundary-type meshfree method, the boundary radial point interpolation method (BRPIM), is presented for solving boundary value problems of two-dimensional solid mechanics. In the BRPIM, the boundary of a problem domain is represented by a set of properly scattered nodes. A technique is proposed to construct shape functions using radial functions as basis functions. The shape functions so formulated are proven to possess both delta function property and partitions of unity property. Boundary conditions can be easily implemented as in the conventional Boundary Element Method (BEM). The Boundary Integral Equation (BIE) for 2-D elastostatics is discretized using the radial basis point interpolation. Some important parameters on the performance of the BRPIM are investigated thoroughly. Validity and efficiency of the present BRPIM are demonstrated through a number of numerical examples.

MODIFIED DECOMPOSITION METHOD FOR SOLVING INITIAL AND BOUNDARY VALUE PROBLEMS USING PADE APPROXIMANTS

  • Noor, Muhammad Aslam;Noor, Khalida Inayat;Mohyud-Din, Syed Tauseef;Shaikh, Noor Ahmed
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1265-1277
    • /
    • 2009
  • In this paper, we apply a new decomposition method for solving initial and boundary value problems, which is due to Noor and Noor [18]. The analytical results are calculated in terms of convergent series with easily computable components. The diagonal Pade approximants are applied to make the work more concise and for the better understanding of the solution behavior. The proposed technique is tested on boundary layer problem; Thomas-Fermi, Blasius and sixth-order singularly perturbed Boussinesq equations. Numerical results reveal the complete reliability of the suggested scheme. This new decomposition method can be viewed as an alternative of Adomian decomposition method and homotopy perturbation methods.

  • PDF

Analysis of Spiral Bevel Gear by Inverse Problem (역문제에 의한 스파이얼 베벨기어의 해석)

  • 박성완
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.85-95
    • /
    • 2001
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of spiral bevel gear , using 2-dimension model considered near the tooth by root stress. Determine root stress is carried out far the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. And from those estimated results, the comparing estimate value with boundary element method value was discussed.

  • PDF

VARIATIONAL DECOMPOSITION METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

  • Noor, Muhammad Aslam;Mohyud-Din, Syed Tauseef
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1343-1359
    • /
    • 2009
  • In this paper, we implement a relatively new analytical technique by combining the traditional variational iteration method and the decomposition method which is called as the variational decomposition method (VDM) for solving the sixth-order boundary value problems. The proposed technique is in fact the modification of variatioanal iteration method by coupling it with the so-called Adomian's polynomials. The analytical results of the equations have been obtained in terms of convergent series with easily computable components. Comparisons are made to verify the reliability and accuracy of the proposed algorithm. Several examples are given to check the efficiency of the proposed algorithm. We have also considered an example where the VDM is not reliable.

  • PDF

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

MIXED BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL EQUATIONS WITH DIFFERENT DEVIATED ARGUMENTS

  • Zhang, Lihong;Wang, Guotao;Song, Guangxing
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.191-200
    • /
    • 2011
  • This paper deals with second order differential equations with different deviated arguments ${\alpha}$(t) and ${\beta}$(t, ${\mu}$(t)). We investigate the existence of solutions of such problems with nonlinear mixed boundary conditions. To obtain corresponding results we apply the monotone iterative technique and the lower-upper solutions method. Two examples demonstrate the application of our results.

Analysis of Torque on Spur Gear by Inverse Problem (역문제에 의한 평치차의 토크 해석)

  • 박성완;이장규;우창기;김봉각;윤종희;인승현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.3-10
    • /
    • 2002
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of spur gear, using 2-dimension model considered near the tooth by root stress. Determine root stress is carried out for the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. And from those estimated results, the comparing estimate value with boundary element method value was discussed.

  • PDF

A Computer Oriented Solution for the Fractional Boundary Value Problem with Fuzzy Parameters with Application to Singular Perturbed Problems

  • Asklany, Somia A.;Youssef, I.K.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.223-227
    • /
    • 2021
  • A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.