• Title/Summary/Keyword: Boundary Strength

Search Result 853, Processing Time 0.035 seconds

Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints (암반의 경계조건을 고려한 절리면 직접전단시험기 개발)

  • 이영휘;김용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures such as cut slopes and tunnels are largely controlled by the conditions of the rock joint as well as its boundary conditions. The conditions of rock joints comprise asperity strength, roughness, and filling materials. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus was developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. The test results for saw-cut teeth joints show that shear strength should be evaluated by considering its specific boundary conditions far the design of tunnels and cut slopes.

A Study on Dynamic Analyses of Cut and Cover Tunnel during Earthquakes (개착터널에 대한 지진 시 동적수치해석에 관한 연구)

  • Park, Sung-Sik;Moon, Hong-Duk;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.237-250
    • /
    • 2015
  • Underground structures such as a tunnel have been considered as safer than structures on the ground during earthquake. However, severe damages of underground structures occurred at subway tunnel during 1995 Kobe Earthquake and such damages are gradually increased. In this study, a dynamic behavior of a cut and cover tunnel surrounded by weathered soils is investigated using Mohr-Coulomb Model. Parametric study was carried out for boundary conditions, tensile strength, and earthquake magnitudes. The results of numerical analyses in terms of ground deformations and stresses acting on the lining were quite dependent on the side boundary condition (free or fix conditions) and tensile strength of surrounding soils. The ground was deformed upward at the end of earthquake when the side boundary condition was fixed, whereas residual deformations were not predicted when it was free. When the tensile strength of a soil was set to the same as its cohesion, residual deformation was less than 1cm, regardless of side boundary conditions or input accelerations. In addition to that, stress conditions at the maximum deformation and end of earthquake were within an allowable range and considered as safe. Proper boundary conditions and material properties such as tensile strength are quite important because they may significantly impact on the results of dynamic analyses.

Block Boundary Detection Technique for Adaptive Blocking Artifacts Reduction (적응적 블록화 현상 제거를 위한 블록 경계 검출 기법)

  • Kim, Sung-Deuk;Lim, Kyoung-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.2
    • /
    • pp.11-19
    • /
    • 2010
  • Most of deblocking filters assumes that the block boundaries are accurately known and the coding information like quantization parameters are available. In some applications such as commercial television, however, many external video inputs without known block boundary and coding information arc given. If a decompressed video sequence heavily degraded with blocking artifacts is given through the external video port, it is absolutely necessary to detect block boundaries and control the strength of deblocking filtering by analysing the given images. This paper presents an efficient method to find the block boundaries and estimate the strength of the blocking artifacts without the knowledge of coding information. In addition, the confidence of the estimated blocking artifact information is also evaluated to control the adaptive deblocking filter robustly. Experiment results show that the estimated block boundary locations and strength relative strength and confidence information are practically good enough to reduce the blocking artifacts without prior knowledge.

A Study on the Fatigue Behavior of the Welded Structural Details in Plate Girder (플레이트거더 용접구조상세의 피로거동에 관한 연구)

  • Lee, Myeong-Gu;Lee, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.2
    • /
    • pp.14-20
    • /
    • 2008
  • The objective of this study is to examine fatigue strength of the welded details. In order to attain the goal of this study, the bending fatigue tests was performed for four kinds of welded details used in steel bridges, such as in-plane gusset, out-of-plane gusset, cruciform, and cover plate. The effect of the length of welded attachment on fatigue strength was greater in out-of-plane gusset than in in-plane gusset. The fatigue strength of welded details with short attachment was superior to that with long attachment. Fatigue strength of welded details with transversely loaded welds was lower than that with longitudinally loaded welds, and those results were not satisfied with AASHTO specifications. For the fatigue strength of cover plate, cover plate with rectangular section was superior to that with tapered section. It was found that the fatigue crack initiates at the points of stress concentration which are the boundary between the base metal and the bead of weld in the part of the longitudinal edge of attachment, and propagates first along the boundary and along the perpendicular to the direction of the principle stress in the base metal of welded tip.

Change of high temperature strength of $Si_{3}N_{4}/SiC$ nanocomposites with sintering additives (소결조제에 따른 $Si_{3}N_{4}/SiC$ 초미립복합재료의 고온강도변화)

  • 황광택;김창삼;정덕수;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.558-563
    • /
    • 1996
  • Fracture strength of $Si_{3}N_{4}/20$ vol% SiC nanocomposites with fifferent sintering additives was measured. Strength of nanocomposites with 6 wt% $Y_{2}O_{3}$ and 2 wt% $Al_{2}O_{3}$ as sintering additives was higher at room temperature but significant strength degradation at elevated temperature was occured due to the softening of grain boundary phase. Fracture strength of 8 wt% $Y_{2}O_{3}$ doped sample was higher than that of $Al_{2}O_{3}$ added sample at $1400^{\circ}C$. The retention of high temperature strength in 8 wt% $Y_{2}O_{3}$ doped sample can be attributed to high softening temperature and crystallization of grain boundary glassy phase.

  • PDF

Preliminary Study on Boundary Detailing of Structural Wall with Spirals (Spiral 철근 배근된 전단벽 단부의 내진성능 연구를 위한 예비 고찰)

  • 김록배;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.589-594
    • /
    • 2000
  • The necessary strength and ductility to avoid structural damage under moderate earthquake can be achieved by properly detailed transverse reinforcement in the plastic hinge zone. However, most structural walls have a higher aspect ratio(M/Vl\ulcorner) without well confined boundary regions. Therefore there is a need for adequate detailing in the plastic hinge zone, particularly boundary regions. In this paper, the fabricated interlocking spirals is introduced as a new seismic detailing for ductile behavior of the structural walls to be able to substitute for existing complicated detailing with ties. This paper also investigates the behavior characteristics of structural walls with interlocking spirals including confinement of the concrete and strength associated with flexure and shear.

  • PDF

A Study on the Ultimate Strength Behaviour According to the Boundary Condition of a Plate under Thrust (면내하중을 받는 판의 경계조건에 따른 최종강도거동에 관한 연구)

  • 고재용;박주신;최익창;이계희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.557-564
    • /
    • 2002
  • One of the primary factors like plate structure In ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of any other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's Plate and post-buckling analysis must be considered. In this study, the rectangular plate is compressed by the in-plane load. Buckling & Ultimate strength characteristics we applied to be the elasto-plasticity large deformation by F.E.M. On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of tile ship's plate In accordance with boundary condition based on the series analysis In case of the compressive load operation.

  • PDF

Planar plastic flow of polymers near very rough walls

  • Lyamina, Elena A.;Date, Prashant P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.707-718
    • /
    • 2016
  • The main objective of the present paper is to investigate, by means of a boundary value problem permitting a semi-analytic solution, qualitative behaviour of solutions for two pressure-dependent yield criteria used for plastically incompressible polymers. The study mainly focuses on the regime of friction (sticking and sliding). It is shown that the existence of the solution satisfying the regime of sticking depends on other boundary conditions. In particular, there is such a class of boundary conditions depending on the yield criterion adopted that the regime of sliding is required for the existence of the solution independently of the friction law.

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.

Shear Strength of Plate Girder (플레이트거더의 전단내력)

  • Choi, Chui-Kyung;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.169-176
    • /
    • 2003
  • In the design of plate girder web panels, it is required to evaluate accurately the elastic buckling strength under shear, whether or not the post-buckling strength is accounted for. Currently, elastic shear buckling coefficient of web panels stiffened by transverse intermediate stiffeners are determined by assuming conservatively that web panels are simply supported at the juncture between the flange and web. Although the notion of the real boundary condition at the juncture of the web and the flanges to be somewhere between simple and fixed has been recognized from early days, the boundary condition has been conservatively assumed, mainly due to lack of means to evaluate it in a rational manner. In this paper, a series of numerical analyses and experiments is carried out to provide a simple equation with some parameters especially the flange-web thickness ratio.