• Title/Summary/Keyword: Boundary Layer dynamics

Search Result 143, Processing Time 0.025 seconds

Analysis of Airfoil Boundary Layer Characteristics with Navier-Stokes Equations (Navier-Stokes equations을 활용한 익형의 점성경계층 특성분석)

  • Kim, C.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.199-201
    • /
    • 2011
  • NACA0012 Airfoil was simulated with Computational Fluid Dynamics(CFD) and the aerodynamic characteristics was analyzed for various far-field boundary distances ranging from 10 airfoil chord to 50 chord Drag coefficient distribution was dependent on the far-field distance and circulation, integrated along the loop inside the flow region, was also dependent. It was turned out that some corrections based on the circulation should be added to the far-field boundary condition for accurate airfoil simulation.

  • PDF

REMOTE SENSING OF ATMOSPHERIC FRONTAL DYNAMICS OVER THE OCEAN

  • Levy, Gad;Patoux, Jerome
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.1003-1006
    • /
    • 2006
  • Frontal regions in midlatitude storms exhibit a wide range of behavior, which can be observed by remote sensors. These include decay, strengthening, rotating, and sometimes spawning of new cyclones. Here we refine and apply recent theories of front and frontal wave development to a case of a front clearly observed and analyzed in remote sensing data. By applying innovative analysis techniques to the data we assess the respective roles of ageostrophy, background deformation, and Boundary Layer processes in determining the evolution of the surface front. Our analysis comprises of diagnosis of the terms appearing in the vorticity and divergence equations using remotely sensed observations.

  • PDF

A Study on the Phenomena at a Liquid-Vapor Interface by the Molecular Dynamics Method (분자동역학법을 이용한 기액계면현상에 관한 연구)

  • Choi, Hyun-Kue;Song, Chi-Sung;Kim, Hye-Min;Lee, Jung-Hye;Choi, Soon-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.1 s.232
    • /
    • pp.159-168
    • /
    • 2005
  • In recent studies, it was reported that there existed the temperature discontinuity at a liquid-vapor interface in an equilibrium state. However, from the viewpoint of the classical thermodynamics, it is highly questionable result although considering that the experiments related with a boundary layer is very difficult due to the extremely thin thickness of it. To clarify whether the temperature discontinuity over a liquid-vapor interface really exists, the computer simulations were performed. From the simulation results, it could be concluded that the misconception in a temperature calculation might result in non-uniform temperature distributions over an interface under an equilibrium state.

Measurement and Analysis for the Upper Side Flow Boundary Layer of a High Speed Train Using Wind Tunnel Experiments with a Scaled Model (축소모형 풍동시험을 이용한 고속열차의 유동 상부경계층 측정 및 분석)

  • Oh, Hyuck Keun;Kwon, Hyeok-bin;Kwak, Minho;Kim, Seogwon;Park, Choonsoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • The flows around a high speed train are very important because they could affect the aerodynamic characteristics such as drag and acoustic noise. Especially the boundary layer of flows could represent the characteristic of flows around the high speed train. Most previous studies have focused on the boundary layer region along the train length direction for the side of the train and underbody. The measurement and analysis of the boundary layer for the roof side is also very important because it could determine the flow inlet condition for the pantograph. In this study, the roof boundary layer was measured with a 1/20 scaled model of the next generation high speed train, and the results were compared with full-scaled computational fluid dynamics results to confirm their validity. As a result, it was confirmed that the flow inlet condition for the pantograph is about 85% of the train speed. Additionally, the characteristics of the boundary layer, which increases along the train direction, was also analyzed.

An Improved Continuous Integral Variable Structure Systems with Prescribed Control Performance for Regulation Controls of Uncertain General Linear Systems (불확실 일반 선형 시스템의 레귤레이션 제어를 위한 사전 제어 성능을 갖는 개선된 연속 적분 가변구조 시스템)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1759-1771
    • /
    • 2017
  • In this paper, an improved continuous integral variable structure systems(ICIVSS) with the prescribed control performance is designed for simple regulation controls of uncertain general linear systems. An integral sliding surface with an integral state having a special initial condition is adopted for removing the reaching phase and predetermining the ideal sliding trajectory from a given initial state to the origin in the state space. The ideal sliding dynamics of the integral sliding surface is analytically obtained and the solution of the ideal sliding dynamics can predetermine the ideal sliding trajectory(integral sliding surface) from the given initial state to the origin. Provided that the value of the integral sliding surface is bounded by certain value by means of the continuous input, the norm of the state error to the ideal sliding trajectory is analyzed and obtained in Theorem 1. A corresponding discontinuous control input with the exponential stability is proposed to generate the perfect sliding mode on the every point of the pre-selected sliding surface. For practical applications, the discontinuity of the VSS control input is approximated to be continuous based on the proposed modified fixed boundary layer method. The bounded stability by the continuous input is investigated in Theorem 3. With combining the results of Theorem 1 and Theorem 3, as the prescribed control performance, the pre specification on the error to the ideal sliding trajectory is possible by means of the boundary layer continuous input with the integral sliding surface. The suggested algorithm with the continuous input can provide the effective method to increase the control accuracy within the boundary layer by means of the increase of the $G_1$ gain. Through an illustrative design example and simulation study, the usefulness of the main results is verified.

A robust controller design for robot manipulators with actuator dynamics (구동기의 동특성을 고려한 로봇매니퓰레이터의 강인제어기 설계)

  • 박광석;황동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.139-142
    • /
    • 1997
  • In this paper, a robust controller is proposed to achieve an accurate tracking for an uncertain nonlinear plant with actuator dynamics. The extent of parameter uncertainty can be quantified by using linear parameterization technique. A switching controller is proposed to guarantee the global asymptotic stability of the plant. In order to eliminate the chattering caused by the switching controller, a smoothing controller is designed using the boundary layer technique around the sliding surface and guarantees the uniform ultimate boundedness of the tracking error.

  • PDF

NUMERICAL SIMULATION OF HIGH-SPEED FLOWS WITH SHOCK WAVE TURBULENT BOUNDARY LAYER INTERACTIONS (충격파와 난류경계층의 상호작용에 대한 수치해석)

  • Moon S. Y.;Sohn C. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.51-59
    • /
    • 2000
  • The Interactions of shock wave with turbulent boundary layers in high-speed flows cause complex flowfields which result in increased adverse pressure gradients, skin friction and temperature. Accurate and reliable prediction of such phenomena is needed in designing high-speed propulsion systems. Such analyses of the complex flowfields require sophisticated numerical scheme that can resolve interactions between shock wave and boundary layers accurately. Therefore the purpose of the present. article is to introduce an accurate and efficient mixed explicit-implicit generalized Galerkin finite element method. To demonstrate the validity of the theory and numerical procedure, several benchmark cases are investigated.

  • PDF

Parameter Tuning Algorithm for Sliding Mode Control (슬라이딩 모드 제어를 위한 인자 튜닝 알고리듬)

  • 류세희;박장현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.438-442
    • /
    • 2003
  • For an efficient sliding mode control system stability and chattering avoidance should be guaranteed. A continuation method using boundary layer is well known as one solution for this. However since not only model uncertainties and disturbances but also control task itself is variable. it is practically impossible to set controller parameters - control discontinuity, control bandwidth, boundary layer thickness - in advance. In this paper first an adaptation law of control discontinuity is introduced to assure system stability and then fuzzy logic based tuning algorithm of design parameters is applied based on monitored performance indices of tracking error, control chattering, and model precision. In the end maximum control bandwidth not exciting unmodeled dynamics and minimum control discontinuity, boundary layer thickness making system stable and free of chattering are found respectively. This eliminates control chattering and enhances control accuracy as much as possible under given control situation. In order to demonstrate the validity of the proposed algorithm safe headway maintenance control for autonomous transportation system is simulated. The control results show that the proposed algorithm guarantees system stability all the time and tunes control parameters consistently and in consequence implements an efficient control in terms of both accuracy and actuator chattering.

  • PDF

Boundary Layer Correction of Hypersonic Wind-tunnel Nozzle Designed by the Methods of Characteristics (특성곡선 해법 설계 극초음속 노즐의 경계층 보정)

  • Kim, So-Yeon;Kim, Sung Don;Jeung, In-Seuck;Lee, Jong-Kuk;Choi, Jeong-Yol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1028-1036
    • /
    • 2014
  • A design procedure is established for hypersonic nozzles by using MOC(Method of Characteristics) and CFD. The inviscid nozzle contour is designed by MOC, then BLC(Boundary Layer Correction) is made by evaluating the boundary layer thickness from viscous CFD analysis. By comparing various definitions of the boundary layer thicknesses, it seems that the boundary layer thickness of 95% speed of the maximum value at the cross section satisfies best the design Mach number. Design procedure is as follow; MOC design, grid generation, inviscid analysis, viscous analysis, BLC and viscous analysis for confirmation and post-processing. All procedures are made automatically by using the batch processing.

Analysis of rarefied compressible boundary layers in transition regime (천이영역의 희박기체 압축성 경계층 해석)

  • Choe, Seo-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.509-517
    • /
    • 1997
  • Results of flat plate compressible boundary layer calculation, based on discrete formulation of DSMC method, are presented in low Mach number and low Knudsen number range. The free stream is a uniform flow of pure nitrogen at various Mach numbers in low pressures (i.e. rarefied gas). Complete thermal accommodation and diffuse molecular reflections are used as the wall boundary condition, replacing unreal no-slip condition used in continuum calculations. In the discrete formulation of DSMC method, there is no need to use ad hoc assumptions on transport properties like viscosity and thermal conductivity, instead viscosity is calculated from values of other field variables (velocity and shear stress). Also the results are compared with existing self-similar continuum solutions. In all Mach number cases computed, velocity slip is most pronounced in regions near the leading edge where continuum formulation renders the solution singular. As the boundary layer develops further downstream, velocity slips asymptote to values that are between 10 to 20% of the magnitude of free stream velocity. When the free stream number density is reduced, so the gas more rarefied, the velocity slip increases as expected.