• Title/Summary/Keyword: Boundary Curve

Search Result 369, Processing Time 0.029 seconds

Characteristic of Friction on Texturing Bearing Steel with Ultrasonic Hole Machine

  • Shin, Mijung;H., Angga Senoaji;Kwon, SoonHong;Chung, SungWon;Kwon, SoonGoo;Park, JongMin;Kim, JongSoon;Choi, WonSik
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • We carry out experiments to characterize textured bearing steel with varying hole density and depth. Textured surface is believed to reduce the friction coefficient, and improve performance and wearing caused by third-body contact. We employ three lubrication regime conditions based on the Stribeck curve: boundary lubrication, mixed lubrication, and hydrodynamic lubrication. Ultrasonic machining is an untraditional machining method wherein abrasive grit particles are used. The hammering process on the work piece surface by abrasive provides the desired form. In this study, we create multi-holes on the bearing steel surface for texturing purposes. Holes are formed by an ultrasonic machine with a diameter of 0.534 mm and a depth of about 2-4 mm, and they are distributed on the contact surface with a density between 1.37-2.23%. The hole density over the surface area is an important factor affecting the friction. We test nine types of textured specimens using four times replication and compare them with the untextured specimen using graphs, as well as photographs taken using a scanning electron microscope. We use Analyzes variant in this experiment to find the correlation between each pair of treatments. Finally, we report the effect of hole density and depth on the friction coefficient.

Internal Short-circuiting Estimation in Clearwell : Part A. Improving T10/T Using Intra Basin and Diffuser Wall by Applying ISEM to Field (정수지 내부 단락류 발생 평가 : Part A. 정수장 내부 단락류 분석을 통한 장폭비와 형태가 T10/T 값에 미치는 영향 연구)

  • Shin, Eunher;Lee, Seungjae;Kim, Sunghoon;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.105-112
    • /
    • 2008
  • Disinfection is a basic and effective microorganism inactivation method and historically contributed a decrease in waterborne diseases. To guarantee the disinfection ability, improving T in CT value is important. Many indexes are used to estimate the hydraulic efficiency, however, these are black-box analysis. Therefore it is need to develope new estimation method. In this study, internal short-circuiting estimation method (ISEM) is developed using CFD and we inquire into the factor which causes increase of $T_{10}/T$ value as LW ratio increases. And the effect of shape on the relation of LW ratio and $T_{10}/T$ is analyzed. As LW ratio increases, internal short-circuiting index (ISI) of influent and effluent zone is rapidly reduced and recirculation and dead zone are reduced in channel zone. Therefore, as the $T_{10}/T$ value converges maximum value, ISI curve is changed from "V" shape to "U" shape and hydraulic efficiency is improved especially in downstream portion of clearwell. The less the shape ratio(width/length of clearwell) is the less the $T_{10}/T$ value is at a same LW ratio because the portion of turning zone increases as shape ration decreases, therefore more boundary separation is generated.

An analysis on the Deconstructed Visage in Fashion Illustration - Based on the Deconstructed Visage of Francis Bacon's Painting - (패션 일러스트레이션에 나타난 얼굴해체 - 프란시스 베이컨 회화의 얼굴해체를 바탕으로 -)

  • Choi, Jung-Hwa;Choi, Yoo-Jin
    • Fashion & Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.874-885
    • /
    • 2013
  • This study analyzes the visage in fashion illustration based on the deconstructed visage of Francis Bacon's paintings as well as analyzes fashion illustration works since 2000. The deconstructed visages in Francis Bacon's paintings are classified as blurring, elimination, distortion and division. The expressive methods and meanings in fashion illustration (according to categorization) are as follow. Blurring shows an ambiguous visage organ by the sweeping of the brush, removal of a boundary among the visage, body and clothes, gradation of organic line like visage shapes, stretching of the a plat combined to visage and fragmentation of visage. It represents an uncertainty of the fashion theme and image interpretation, impossibility of figure by ambiguity, fantastic effect and the induction of the uncanny. Elimination shows the background color's painting of a photo-montage, overlap of a cutting of visage's part and background of a plat, elimination of the visage and the elimination of eyes, nose or lips. It represents a weakened identity, the reinforcement of anonymity, creation of a violent image, and uncanny unfamiliarity. Distortion shows a distorted visage by free drawing, and unconscious drawing line, fluid digital body, combination of an unconscious curve, and an eccentric combination of the accidental. It represents the relief of specialty about realistic existence, hypothetical immateriality and fantasy. Division shows overlapped visages with different angles, the weird combination of a plural visage and different species and a plural breakaway of direction, and the position of several organs. It represents motion by power's trace, non-territory of species, ambiguity and uncertainty and the uncanny.

The Shape Optimization of a Torque Converter Lock-up Clutch Using the B-Spline and Finite Element Mesh Smoothing (B-Spline 및 유한요소 유연화법 활용 자동차 록업클러치의 형상최적화)

  • Hyun, Seok-Jeong;Kim, Cheol;Son, Jong-Ho;Shim, Se-Hyun;Jang, Jae-Duk;Joo, In-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • A FEM-based efficient method is developed for the shape optimization of 2-D structures. The combined SLP and Simplex method are coupled with finite element analysis. Selected set of master nodes on the design boundaries are employed as design variables and assigned to move towards their normal directions. The other nodes along the design boundaries are grouped into the master node. By interpolating the repositioned master nodes, the B-spline curves are formed so that the rest mid-nodes efficiently settle down on the B-spline curves. Mesh smoothing scheme is also applied for the nodes on the design boundary to maintain most finite elements in good quality. Finally, a numerical implementation of optimum design of an automobile torque converter piston subjected to pressure and centrifugal loads is presented. The results shows additional weight up to 13% may be saved after the shape optimization.

Classification of Tumor cells in Phase-contrast Microscopy Image using Fourier Descriptor (위상차 현미경 영상 내 푸리에 묘사자를 이용한 암세포 형태별 분류)

  • Kang, Mi-Sun;Lee, Jeong-Eom;Kim, Hye-Ryun;Kim, Myoung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.169-176
    • /
    • 2012
  • Tumor cell morphology is closely related to its migratory behaviors. An active tumor cell has a highly irregular shape, whereas a spherical cell is inactive. Thus, quantitative analysis of cell features is crucial to determine tumor malignancy or to test the efficacy of anticancer treatment. We use 3D time-lapse phase-contrast microscopy to analyze single cell morphology because it enables to observe long-term activity of living cells without photobleaching and phototoxicity, which is common in other fluorescence-labeled microscopy. Despite this advantage, there are image-level drawbacks to phase-contrast microscopy, such as local light effect and contrast interference ring. Therefore, we first corrected for non-uniform illumination artifacts and then we use intensity distribution information to detect cell boundary. In phase contrast microscopy image, cell is normally appeared as dark region surrounded by bright halo ring. Due to halo artifact is minimal around the cell body and has non-symmetric diffusion pattern, we calculate cross sectional plane which intersects center of each cell and orthogonal to first principal axis. Then, we extract dark cell region by analyzing intensity profile curve considering local bright peak as halo area. Finally, we calculated the Fourier descriptor that morphological characteristics of cell to classify tumor cells into active and inactive groups. We validated classification accuracy by comparing our findings with manually obtained results.

Parametric Study on the Aerodynamic Drag of Ultra High-speed Train in Evacuated Tube - Part 1 (진공튜브 내 초고속열차의 공기저항 파라메타 연구 - 1)

  • Kwon, Hyeok-Bin;Kang, Bu-Byoung;Kim, Byeong-Yun;Lee, Du-Hwan;Jung, Hyun-Ju
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • This study is devoted to understand the basic characteristics of the flowfield around a train in evacuated tube and to suggest an efficient numerical method to calculate the flowfield. To get steady-state solution in minimum calculation domain, various boundary condition have been tried for steady calculation and have been compared to the solution of unsteady calculation. At the train velocity of 300km/h, the aerodynamic drag results of both calculation method agreed very well. The drag ratio between on the open filed and in the tube from the calculation result by the suggested numerical method lied in the same fitting curve with that from the filed test of high-speed trains running in the line.

Mechanical Properties of B-Doped Ni3Al-Based Intermetallic Alloy

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.42-45
    • /
    • 2012
  • The mechanical behavior and microstructural evolution during high temperature tensile deformation of recrystallized Ni3Al polycrystals doped with boron were investigated as functions of initial grain size, tensile strain rate and temperature. In order to obtain more precise information on the deformation mechanism, tensile specimens were rapidly quenched immediately after deformation at a cooling rate of more than $2000Ks^{-1}$, and were then observed by transmission electron microscopy (TEM). Mechanical tests in the range of 923 K to 1012 K were carried out in a vacuum of less than $3{\times}10^{-4}$ Pa using an Instron-type machine with various but constant cross head speeds corresponding to the initial strain rates from $1.0{\times}10^{-4}$ to $3.1{\times}10^{-5}s^{-1}$. After heating to deformation temperature, the specimen was kept for more than 1.8 ks before testing. The following results were obtained: (1) Flow behavior was affected by initial strain size; with decreasing initial grain size, the level of a stress peak in the true stress-true strain curve decreased, the steady state region was enlarged and elongation increased. (2) On the basis of TEM observation of rapidly quenched specimens, it was confirmed that dynamic recrystallization certainly occurred on deformation of fine-grained ($3.3{\mu}m$) and intermediate-grained ($5.0{\mu}m$) specimens at an initial strain rate of $3.1{\times}10^{-5}s^{-1}$ and at 973 K. (3) There were some dislocation-free grains among the new recrystallized grains. The obtained results suggest that both dynamic recrystallization and grain boundary sliding are operative during high temperature deformation.

Breakthrough Curves and Miscible Displacement of Cadmium Through Double-Layered Reclaimed Soils Amended with Macroporous Granule

  • Kim, Hye-Jin;Ryu, Jin-Hee;Kim, Si-Ju;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Transport of heavy metals such as Cd is affected by several rate-limiting processes including adsorption and desorption by exchange reactions in soils. In this study, column transport and batch kinetic experiments were performed to assess Cd mobility in a double-layered soil with a reclaimed saline and sodic soil (SSS) as top soil and macroporous granule (MPG) as a bottom layer. For individual soil layer having different physical and chemical properties, Cd was considered to be nonlinear reactivity with the soil matrix in layered soils. The dispersive equation for reactive solutes was solved with three types of boundary conditions for the interface between soil layers. The adsorption of Cd with respect to the saline-sodic sandy loam and the MPG indicated that the nature of the sites or the mechanisms involved in the sorption process of Cd was different and the amounts of Cd for both of samples increases with increasing amounts of equilibrium concentration whereas the amount of Cd adsorbed in saline-sodic sandy loam soil was higher than that in MPG. The results of breakthrough curve indicating relative Cd retardation accompanied by layer material and sequence during leaching showed that the number of pore volumes to reach the maximum relative concentration of 1 increased in the order of MPG, SSS, and double layer of SSS-MPG. Breakthrough curves (BTCs) from column experiments were well predicted with our double-layered model where independently derived solute physical and retention parameters were implemented.

Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale

  • Du, Chengbin;Jiang, Shouyan;Qin, Wu;Xu, Hairong;Lei, Dong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.135-147
    • /
    • 2012
  • At mesoscale, concrete is considered as a three-phase composite material consisting of the aggregate particles, the cement matrix and the interfacial transition zone (ITZ). The reconstruction of the internal structures for concrete composites requires the identification of the boundary of the aggregate particles and the cement matrix using digital imaging technology followed by post-processing through MATLAB. A parameter study covers the subsection transformation, median filter, and open and close operation of the digital image sample to obtain the optimal parameter for performing the image processing technology. The subsection transformation is performed using a grey histogram of the digital image samples with a threshold value of [120, 210] followed by median filtering with a $16{\times}16$ square module based on the dimensions of the aggregate particles and their internal impurity. We then select a "disk" tectonic structure with a specific radius, which performs open and close operations on the images. The edges of the aggregate particles (similar to the original digital images) are obtained using the canny edge detection method. The finite element model at mesoscale can be established using the proposed image processing technology. The location of the crack determined through the numerical method is identical to the experimental result, and the load-displacement curve determined through the numerical method is in close agreement with the experimental results. Comparisons of the numerical and experimental results show that the proposed image processing technology is highly effective in reconstructing the internal structures of concrete composites.

The Methodic Study on a Standard of Classification of Pulse Condition -a Focus of ${\ulcorner}$The Pulse Studies of Bin-Ho(瀕湖脈學)${\lrcorner}$- (맥상 분류 기준에 대한 방법론적 고찰 - "빈호맥학(瀕湖脈學)"을 중심으로 -)

  • Lee, Ju-Ho;Choi, Hwan-Soo;Kim, Chul-Jung
    • Korean Journal of Oriental Medicine
    • /
    • v.10 no.1
    • /
    • pp.49-61
    • /
    • 2004
  • The Standardization of terms in The Pulse studies(脈學) is a need for development of learning. This study, for the correction of existing misused terms in The Pulse studies, we study on modernly and objectively the terms in The Pulse studies. By a focus of ${\ulcorner}$The Pulse Studies of Bin-Ho(瀕湖脈學)${\lrcorner}$, we studies on the new classification of pulse condition. The error of a existing technical books on Pulse studies begin that the classification of pulse condition is not establish a Standardization. For the correction of existing misused terms in The Pulse studies, we study on the pulse condition is expressed objectively a blood vessel that it is a subject of pulse condition. The expression of blood vessel contain a depth of blood vessel, a speed of pulsation, a curve of blood vessel, thickness of blood vessel, a diameter of blood vessel in expand and contract of blood vessel, a interval in expand and contract of blood vessel, a distinctness on a boundary of blood vessel, a speed of blood flow in blood vessel, a volume of blood flow in blood vessel, a condition of blood in blood vessel, a propelling power of blood vessel. These is standard of the new classification of pulse condition.

  • PDF