Parametric Study on the Aerodynamic Drag of Ultra High-speed Train in Evacuated Tube - Part 1

진공튜브 내 초고속열차의 공기저항 파라메타 연구 - 1

  • 권혁빈 (한국철도기술연구원 초고속열차연구실) ;
  • 강부병 (한국철도기술연구원 초고속열차연구실) ;
  • 김병윤 ((주)넥스트이엔에스, 중공업/건설그룹) ;
  • 이두환 ((주)넥스트이엔에스, 중공업/건설그룹) ;
  • 정현주 ((주)넥스트이엔에스, 중공업/건설그룹)
  • Published : 2010.02.26

Abstract

This study is devoted to understand the basic characteristics of the flowfield around a train in evacuated tube and to suggest an efficient numerical method to calculate the flowfield. To get steady-state solution in minimum calculation domain, various boundary condition have been tried for steady calculation and have been compared to the solution of unsteady calculation. At the train velocity of 300km/h, the aerodynamic drag results of both calculation method agreed very well. The drag ratio between on the open filed and in the tube from the calculation result by the suggested numerical method lied in the same fitting curve with that from the filed test of high-speed trains running in the line.

본 연구에서는 튜브-열차 시스템의 기본적인 유동장의 특성을 파악하고, 튜브열차의 공기저항을 계산할 수 있는 보다 효율적인 수치 해법을 제시하고 계산 결과에 대한 타당성을 논하였다. 최소한의 계산 영역 내에선 정상상태의 해를 찾기 위하여 비정상 해석의 결과를 기준으로 하여 경계조건의 부여 방법을 변화시킨 정상 해석의 결과를 비교한 결과, 열차속도가 300 km/h일 경우에는 공기저항의 값이 정상해석 결과와 비정상해석 결과가 잘 일치하였으며, 동일 속도 대역에서의 고속열차 현장시험 결과와 비교한 결과 열차/터널 단면적비에 따라 공기저항의 비가 동일한 추세를 나타나는 것으로 나타났다.

Keywords

References

  1. 권혁빈, 김석원, 김영국, 박춘수(2007), "한국형 고속열차의 주행저항식 예측," 한국철도학회 2007년 춘계학술대회 논문집.
  2. H. W. Lee, K. C. Kim, and J. Lee (2006), "Review of Maglev Train Technologies," IEEE Transactions on Magnetics, Vol. 42, No. 7, pp. 1917-1925. https://doi.org/10.1109/TMAG.2006.875842
  3. W. P. Trzaskoma (1970), "Tube Vehicle System (TVS) Technology Review."
  4. http://www.swissmetro.ch/
  5. Z. Y. Shen (2005), "On developing high-speed evacuated tube transportation in China," Journal of Southwest Jiaotong University, Vol. 40, No. 2, pp. 133-137.
  6. Y. Sato et al. (2006), "SUPERMETRO - Super-High-SpeedTrain in Low Pressure Tunnel," World Congress on Railway and Research 2006.
  7. J. L. Peters (1893), "Aerodynamics of very high speed trains and maglev vehicles: State of the art and future potential," Int. J. of Vehicle Design, Special Publication Sp3.
  8. C. J. Baker and N. D. Hurnphreys (2002), "Forces on vehicles in cross winds from moving model tests," Journal of wind engineering and industrial aerodynamics, Vol. 41-44, pp. 2673- 2684.
  9. H. B. Kwon, S. W. Nam, and W. H. You (2008), "Wind tunnel testing on crosswind aerodynamic forces acting on railway vehicles," The Seventh JSME-KSME Thermal and Fluids Engineering Conference.
  10. E. Mercker and H. W. Knape (1989), "Ground simulation with moving belt and tangential blowing for full-scale automotive testing in an wind tunnel," SAE Paper 890367.
  11. H. B. Kwon, Y. W. Park, D. H. Lee, and M. S. Kim (2001), "Wind tunnel experiments on Korean high-speed train using various ground simulation technique," Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, No. 13, pp. 1179-1195. https://doi.org/10.1016/S0167-6105(01)00107-6
  12. F. Masbernat, Y. F. Wolfhugel, and J. C. Dumas (1992), "CFD aerodynamics of the french high-speed train," SAE Technical paper series 920343.
  13. E. Mestreau, S. Aita, and R. Loehner (1993), "TGV tunnel entry simulations using a finite element code with automatic remeshing," AIAA-93-0890.
  14. T. Ogawa and K. Fujii (1997), "Numerical investigation of three-dimensional compressible flows induced by a train moving into a tunnel," Computer & Fluids, Vol. 26, No. 6, pp. 565-585. https://doi.org/10.1016/S0045-7930(97)00008-X
  15. B. S. Holmes, J. Dias, S. M. Rifai, J. C. Buell, Z. Johan, T. Sassa, and T. Sato (1999), "Solution of train-tunnel entry flow using parallel computing," Computational Mechanics, Vol. 23, pp. 124-129. https://doi.org/10.1007/s004660050392
  16. H. B. Kwon, K. H. Jang, Y. S. Kim, K. J., Yee, and D. H. Lee (2001), "Nose shape optimization of high-speed train for minimization of tunnel sonic boom," JSME International Journal Series C, Vol. 44, No. 3, pp. 890-899. https://doi.org/10.1299/jsmec.44.890
  17. 권혁빈 (2001), "터널을 통과하는 고속철도차량에 의한 비정상 압축성 유동장애에 대한 연구," 서울대학교 박사학위논문.
  18. B. Diedrichs (2003), "On computational fluid dynamics modeling of crosswind effects for high-speed rolling stock," Proceedings of Imech Part F: Journal of Rail and Rapid Transit, Vol. 217, pp. 203-226. https://doi.org/10.1243/095440903769012902
  19. H. B. Kwon, T. Y. Kim, D. H. Lee, and M. S. Kim (2003), "Numerical simulation of unsteady compressible flows induced by a high-speed train passing through a tunnel," Proceedings of the I MECH E Part F Journal of Rail and Rapid Transit, Vol. 217, pp. 111-124. https://doi.org/10.1243/095440903765762850
  20. FLUENT 6.3 User's Guide
  21. S. G. Kim, H. B. Kwon, Y. G. Kim, and T. W. Park (2007), "Calculation of resistance to motion of a high-speed train using acceleration measurements in irregular coasting conditions," Proceedings of the I MECH E Part F Journal of Rail and Rapid Transit, Vol. 220, pp. 449-459.
  22. 권혁빈, 남성원, 차창환 (2006), "철도시스템 전잔유체 표준 프레임웍을 이용한 KTX 차량 주변 압력장애에 대한 수치해석," 한국철도학회논문집, 제9권, 제5호, pp. 1-6.