• Title/Summary/Keyword: Bouncing phenomenon

Search Result 12, Processing Time 0.021 seconds

Analysis of the Bouncing Phenomenon due to the Deterioration of the Relay Contact (릴레이 접점 열화에 따른 바운싱 현상 분석)

  • Ryu, Jae-Man;Choi, Sun-Ho;Park, Ki-Hoon;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.383-388
    • /
    • 2014
  • The relay used is gradually increased. Because it is possible to easily control the high voltage and current. Bounce phenomenon is generated in contact during operation relay. As the result, arc is generated at the contact, thereby shortening the contact lifetime. In this study, we analyzed the bouncing phenomenon due to deterioration. It can be seen from the experimental results, and it is minimized at about 100,000 times. Bouncing phenomenon to increase again after the minimization. Consequently, the bouncing related to contact weight and shape of contact surface.

Effect on the Relay Contact Characteristics According to the Presence of Electrical Connection (릴레이 접점 특성에 미치는 전기적 접속의 영향)

  • Jin, In-Young;Choi, Sun-Ho;Kim, Kwan-Sik;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.647-651
    • /
    • 2016
  • The power relay can easily control high voltage and high current through metallic contacts. In addition, it has the advantage in reasonable price. So it has been used in many applications. But the power relay has a weak point by mechanical movements. These mechanical movements cause the bouncing phenomenon. Arc and bouncing phenomenon are the main causes of electric abrasion and material erosion. In this study, mechanical repetitive experiments and repetitive experiments in electrically connected state are conducted. Then these two experimental results in terms of bouncing phenomenon and changes in the contact surface are compared. In all number of repetitions, contacts in an electrically connected state cause smaller number of bounce. Also, It has lower contents of silver on eroded surface than the other. The experimental results would be helpful to the further study of contacts life span.

Bouncing Phenomena of Micro-droplet Train in Inkjet Printing (잉크젯 프린팅에서 발생하는 연속 미소 액적의 바운싱 현상)

  • Ara Jo;Hyoungsoo Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.26-30
    • /
    • 2023
  • Interaction of a droplet and substrate is important to determine the coating and final deposition pattern in inkjet printing system. In particular, an accurate deposition of the droplet should be guaranteed for high-resolution patterning. In this study, we performed high-speed shadowgraph experiments on droplet train impact in inkjet system. From the high-speed images, we observed an unexpected bouncing phenomenon. We have found two factors affecting bouncing regime; the Weber number and the curvature of deposited droplet. Experimental results indicate that there is a critical curvature diameter of deposited droplet, which splits into bouncing and merging regime. From this result, we obtained a power-law behavior between the Weber number and the curvature. The understanding of bouncing phenomena helps to improve the accuracy and productivity of inkjet printing.

Vibration Behavior of a Rotating Brush Roll in Contact with a Solid Roll (강체롤과 접촉 회전하는 브러시롤의 진동 현상)

  • 허주호
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.499-509
    • /
    • 1997
  • During the process of oxide removal from work rolls in sheet metal manufacture, filamentary brushes frequently exhibit a bouncing or chatter behavior. The dynamics of this phenomenon is investigated through the development of expressions for the non-linear contact stiffness between the brush and the roll. With formulation of simple structural models, the time responses in the presence and absence of friction under random excitation are investigated. Possible solutions for the minimization or avoidance of this bouncing or chatter problem are also suggested.

  • PDF

Change of Operating Characteristics of Latching Relay with Temperature (래칭 릴레이의 온도에 따른 동작 특성 변화)

  • Ryu, Jae-Man;Jin, In-Young;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.520-524
    • /
    • 2017
  • Electrical relay in an essential part of smart grids, electrical vehicles, and LED lightning systems. Therefore, studying relay reliability is important. Relays using permanent magnet actuators (PMAs), which are energy efficient, are also in the spotlight. However, most of the permanent magnets used in PMAs have a characteristic wherein the magnetic flux decreases as the temperature increases. When the magnetic flux is reduced, the force acting on the actuator is reduced. Therefore, in this study, we measured the decrease in the relay operating speed with permanent magnet reduction due to temperature rise. In addition, changes in the bouncing phenomena due to magnetic flux reduction were analyzed. As a result, the operating speed of the relay has decreased and the bouncing phenomenon has not significantly changed.

Analysis of Electrical Characteristics Due to Deterioration of Electromagnetic Contactor (전자접촉기 열화에 따른 전기적 특성 분석)

  • Choi, Sun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.407-412
    • /
    • 2019
  • In this paper, the changes in the electrical characteristics (arc energy, contact resistance, and bouncing phenomenon) due to the deterioration of the contact are analyzed. The results are generally consistent and can be analyzed for contact deterioration. The results of the experiment demonstrate that the arc energy is linearly related to the current when the contact samples and the voltage conditions are the same. The contact resistance varies due to multiple factors, but is generally within a certain range, and the contact deterioration can be determined. Contact stabilization can be detected by the decrease in the bouncing phenomenon due to deterioration (the change of the shape of the contact).

Analysis of the Bounce Phenomenon According to the Load of the Relay Contact (릴레이 접점의 부하에 따른 바운스 현상 분석)

  • Choi, Sun-Ho;Kim, Kwan-Sik;Ryu, Jae-Man;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.115-119
    • /
    • 2015
  • The power relay can be easily controlled with high voltage and current through the contacts. For this reason, has become widely used range in a variety of applications. In this study, we measured the contact resistance between the bouncing phenomenon of contact due to the change of load. The results of the experiment, the contact resistance increases with the deterioration of the contact, it is possible to predict the life of the relay contacts through the contact resistance. And relay bounce duration time have occurred in 3.5 ms or less. In addition, it is possible to use the results to design an arc suppression circuit device.

Modeling the Influence of Gas Pressure on Droplet Impact Using a Coupled Gas/liquid Boundary Element Method

  • Park, Hong-Bok;Yoon, Sam S.;Jepsen Richard A.;Heister Stephen D.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • An inviscid axisymmetric model capable of predicting droplet bouncing and the detailed pre-impact motion, influenced by the ambient pressure, has been developed using boundary element method (BEM). Because most droplet impact simulations of previous studies assumed that a droplet was already in contact with the impacting substrate at the simulation start, the previous simulations could not accurately describe the effect of the gas compressed between a failing droplet and the impacting substrate. To properly account for the surrounding gas effect, an effect is made to release a droplet from a certain height. High gas pressures are computationally observed in the region between the droplet and the impact surface at instances just prior to impact. The current simulation shows that the droplet retains its spherical shape when the surface tension energy is dominant over the dissipative energy. When increasing the Weber number, the droplet surface structure is highly deformed due to the appearance of the capillary waves and, consequently, a pyramidal surface structure is formed; this phenomenon was verified with our experiment. Parametric studies using our model include the pre-impact behavior which varies as a function of the Weber number and the surrounding gas pressure.

  • PDF

Distributed Shared Memory Scheme for Multi-thread programming (다중쓰레드 프로그래밍을 위한 분산공유메모리 관리 기법)

  • Seo, Dae-Wha
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.791-802
    • /
    • 1996
  • In this paper, we discuss a distributed shared memory management scheme based on multi-threaded programming model for a large-scale loosely coupled multiprocessor system. The scheme covers three major issues in the distribued shared memory;the address translation table management, the block coherence maintenance, and the block placement policy. The scheme efficiently resolves the general problems occurred in the distributed shared memory such as a false sharing, an unnecessary replication, a block bouncing, and an address aliasing phenomenon. It also provides the application transparency, good scalability, easy implementation, and multithreaded programming model to users.

  • PDF

Edge Enhancement due to Diffusion Effect in Magnetic Resonance Imaging (MR 영상에서 확산현상에 의한 경계강조)

  • Hong, I.K.;Ro, Y.M.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.124-127
    • /
    • 1995
  • Due to the self-diffusion of nuclear spins, the edge of phantoms is enhanced in the magnetic resonance imaging (MRI), especially in the case of microscopy [1]. According to several published works, theory has been established that the edge enhancement is caused by the motion narrowing around bounded regions due to diffusions of nuclear spins during data acquisition. It is found, however, that the signal decreases due to the diffusion attenuation and image is distorted as edge of the image is sharpened. In this paper, we wilt investigate this signal loss during data acquisition and its effects on image, i.e., image edge enhancement due to the diffusion phenomenon. This result is new and different from the previously discussed edge enhancement due to the diffusion, namely, by motion narrowing effect or spin bouncing effect at the boundary.

  • PDF