• Title/Summary/Keyword: Bottom structures

Search Result 769, Processing Time 0.023 seconds

Research on the longitudinal stress distribution in steel box girder with large cantilever

  • HONG, Yu;LI, ShengYu;WU, Yining;XU, Dailing;PU, QianHui
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • There are numerous structural details (Longitudinal beam, web plate, U-ribs and I-ribs) in the top and bottom plates of steel box girders, which have significant influences on the longitudinal stress (normal stress) distribution. Clarifying the influence of these structural details on the normal stress distribution is important. In this paper, the ultra-wide steel box girder with large cantilevers of the Jinhai Bridge in China, which is the widest cable-stayed bridge in the world, has been analyzed. A 1:4.5 scale laboratory model of the steel box girder has been manufactured, and the influence of structural details on the normal stress distribution in the top and bottom plates for four different load cases has been analyzed in detail. Furthermore, a three-dimensional finite element model has been established to further investigate the influence regularity of structural details on the normal stress. The experimental and finite element analysis (FEA) results have shown that different structural details of the top and bottom plates have varying effects on the normal stress distribution. Notably, the U-ribs and I-ribs of the top and bottom plates introduce periodicity to the normal stress distribution. The period of the influence of U-ribs on the normal stress distribution is the sum of the single U-rib width and the U-rib spacing, and that of the influence of I-ribs on the normal stress distribution is equal to the spacing of the I-ribs. Furthermore, the same structural details but located at different positions, will have a different effect on the normal stress distribution.

Effects of Vertical Eddy Viscosity on the Velocity Profile - Cases of Given Vertical Eddy viscosity - (鉛直 過粘性係數가 流速의 鉛直構造에 미치는 影響 - 鉛直 過粘性係數가 주어진 境遇 -)

  • 이종찬;최병호
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.119-131
    • /
    • 1994
  • Vertical structures of wind-driven and tidal currents in a rectangular shaped uniform-depth basin of homogeneous water have been investigated using a mode-splitted, multi-level grid-box, hydrodynamic numerical model. The model was verified using analytical solutions for various vertical eddy viscosity profiles such as: a constant eddy viscosity, a linearly decreasing or increasing variation with depth, a quadratic variation with depth and an exponential variation with depth. Particular attention has been paid on the effects of "near-surface wall layer" on vertical shear of velocity. In numerical calculations, the whole water depth was divided into 13 levels with an unequal grid spacing. the model satisfactorily reproduces the velocity profile, but in case the eddy viscosity decreases rapidly with depth as in quadratical or exponential variation with depth, the vertical gradient of velocity near the bottom became very steep, and analytical solutions and numerical results showed some discrepancy. The vertical structures of horizontal velocity vary with both the depth-averaged value of eddy viscosity and its profiles. the velocity near the sea surface and near the bottom responded sensitively to the eddy viscosity of wall layer. For wind-driven current, the strong velocity shear was generated near the sea surface as eddy viscosity near the surface became small. For tidal current, the velocity above the sea bottom layer was almost constant regardless of the profiles of vertical eddy viscosity, but velocity in the sea bottom layer showed strong shear as eddy viscosity became small.

  • PDF

Acoustic Doppler Current Profiler Bottom Tracking Survey of Flow Structures around Geumo Archipelago in the Southern Waters of Korea (ADCP bottom tracking에 의한 금오열도 주변의 해수유동)

  • Choo, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.589-600
    • /
    • 2019
  • In order to investigate the flow structures around Geumo archipelago on Southern Waters of Korea, water movements were measured for 25 hours during spring tide in May and neap tide in September 2002 using ADCP (Acoustic Doppler Current Profiler) attached to a running boat. Dominant directions of ebb and flood current at spring tide are SE-NW, representing the average flow rate of approximately 40cm/s in the surface layer. However because of the topographical reason, the direction and speed of the flow in the narrow waterway sea area around the northwest of Gae Island were different. There was no notable baroclinic component of tidal flow at spring tide. This indicates that the sea area has been actively engaged in vertical mixing due to island wake or eddy due to narrow waterways, shallow water depth and rapid flow rate around archipelago. At neap tide, dominant directions of tidal flows are SSE-NNW and the average flow rate in the surface layer is about 85 percent of the spring tide. The duration and intensity of the flow direction are shorter and less dominant than the spring tide. It is expected that asymmetrical tidal mixing will occur due to vertical velocity shear and horizontal eddies. From daily mean tidal flows obtained from the ADCP observation, it was found that the northwest of Gae Island have flows in NW~NE, the west of Geumo Island have the average currents of up to 21 cm/s WSW~SSW and counterclockwise circulation or eddy currents are formed in the west of Sori Island.

Dynamic Centrifuge Modeling for Evaluating Seismic Loads of Soil-Foundation-Structures (동적 원심모형시험을 통한 지반 및 상부 구조물의 지진 하중 특성)

  • Lee, Sei-Hyun;Kim, Dong-Soo;Choo, Yun-Wook;Park, Hong-Gun;Kim, Dong-Kwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.192-200
    • /
    • 2010
  • Korea is part of a region of low or moderate seismic zone in which few earthquakes have been monitored, so it is difficult to approve design ground motions and seismic responses on structures from response spectrum. In this study, a series of dynamic centrifuge model tests for demonstrating seismic amplification characteristics in soil-foundation-structure system were performed using electro-hydraulic shaking table mounted on the KOCED 5.0 m radius beam centrifuge at KAIST in Korea. The soil model were prepared by raining dry sand and $V_S$ profiles were determined by performing bender element tests before shaking. The foundation types used in this study are shallow embedded foundation and deep basement fixed on the bottom. Total 7 building structures were used and the response of building structures were compared with response spectrum from the acceleration records on surface.

  • PDF

A Shoreline Change Model around Coastal Structures (해안구조물 주변에서 해안선변형 예측모형 실험)

  • 이종섭;박일현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.2
    • /
    • pp.67-74
    • /
    • 1990
  • A numerical model is developed to predict the shoreline change by the coastal structures constructed. In order to describe the wave deformation at the shadow zone of the structure, the present model employs the mild-slope equation in steady state and the wave ray method using the coefficients of wave refraction, diffraction and shoaling. In the model results of shoreline changes for the various structures. it showed a qualitative agreement with the findings observed in the field such as tombolo, and the response of this model was found to be very sensitive to the longshore distribution of wave heights. It was also applied to a field area. From the results of the application this model is proved to be useful around the complex coastal structures and bottom topography.

  • PDF

2D numerical modelling of soil-nailed structures for seismic improvement

  • Panah, Ali Komak;Majidian, Sina
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.37-55
    • /
    • 2013
  • An important issue in the design of soil-nailing systems, as long-term retaining walls, is to assess their stability during seismic events. As such, this study is aimed at simulating the dynamic behavior and failure pattern of nailed structures using two series of numerical analyses, namely dynamic time history and pseudo-static. These numerical simulations are performed using the Finite Difference Method (FDM). In order to consider the actual response of a soil-nailed structure, nonlinear soil behaviour, soil-structure interaction effects, bending resistance of structural elements and construction sequences have been considered in the analyses. The obtained results revealed the efficiency of both analysis methods in simulating the seismic failure mechanism. The predicted failure pattern consists of two sliding blocks enclosed by three slip surfaces, whereby the bottom nails act as anchors and the other nails hold a semi-rigid soil mass. Moreover, it was realized that an increase in the length of the lowest nails is the most effective method to improve seismic stability of soil-nailed structures. Therefore, it is recommended to first estimate the nails pattern for static condition with the minimum required static safety factor. Then, the required seismic stability can be obtained through an increase in the length of the lowest nails. Moreover, placement of additional long nails among lowest nails in existing nailed structures can be considered as a simple retrofitting technique in seismic prone areas.

Retrofitting of squat masonry walls by FRP grids bonded by cement-based mortar

  • Popa, Viorel;Pascu, Radu;Papurcu, Andrei;Albota, Emil
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.125-139
    • /
    • 2016
  • For seismic retrofitting of masonry walls, the use of fibre reinforced cement-based mortar for bonding the fibre grids can eliminate some of the shortcomings related to the use of resin as bonding material. The results of an experimental testing program on masonry walls retrofitted with fibre reinforced mortar and fibre grids are presented in this paper. Seven squat masonry walls were tested under unidirectional lateral displacement reversals and constant axial load. Steel anchors were used to increase the effectiveness of the bond between the fibre grids and the masonry walls. Application of fibre grids on both lateral faces of the walls effectively improved the hysteretic behaviour and specimens could be loaded until slip occurred in the horizontal joint between the masonry and the bottom concrete stub. Application of the fibre grids on a single face did not effectively improve the hysteretic behaviour. Retrofitting with fibre reinforced mortar only prevented the early damage but did not effectively increase deformation capacity. When the boundaries of the cross sections were not properly confined, midplane splitting of the masonry walls occurred. Steel anchors embedded in the walls in the corners area effectively prevented this type of failure.

Implementation of the Optimized Via Structure on the Multi-Layered PCB (다층 인쇄회로 기판 (multi-layered PCB)에서의 최적 via 구조의 구현)

  • 김재원;권대한;김기혁;심선일;박정호;황성우
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.341-344
    • /
    • 2000
  • Several new via structures in printed circuit boards are proposed, fabricated and characterized in RF regime. The new structure with a larger inductance component in the bottom layer shows 3㏈ improvement over the conventional structure. The ADS simulation with model parameters extracted from 3D fie]d solver matches with the characterization of these vias

  • PDF

Non-linear time history analysis of building with torsional irregularity (비틀림비정형을 갖는 건물의 비선형 시간이력해석)

  • Lee, Han-Seon;Ko, Dong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.219-222
    • /
    • 2005
  • Many RC building structures of multiple uses constructed in Korea have the irregularities of torsion and soft story at bottom stories. A typical irregular building was selected as prototype and shaking table tests were performed to investigate the seismic performance of this building. The objective of this study is to evaluate the correlation between the experimental and analytical responses of this irregular building structure subjected to the earthquake excitation by using OpenSees(Open System for Earthquake Engineering Simulation). The results of analyses simulate well the behavior of the building having torsional irregularity and weak stories.

  • PDF

The behaviour of a new type of connection system for light-weight steel structures applied to roof trusses

  • Kaitila, Olli;Kesti, Jyrki;Makelainen, Pentti
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.17-32
    • /
    • 2001
  • The Rosette-joining system is a completely new press-joining method for cold-formed steel structures. One Rosette-joint has a shear capacity equal to that of approximately four screws or rivets. The Rosette thin-walled steel truss system presents a new fully integrated prefabricated alternative to light-weight roof truss structures. The trusses are built up on special industrial production lines from modified top hat sections used as top and bottom chords and channel sections used as webs which are joined together with the Rosette press-joining technique to form a completed structure easy to transport and install. A single web section is used when sufficient but can be strengthened by double-nesting two separate sections or by using two lateral profiles where greater compressive axial forces are met. An individual joint in the truss can be strengthened by introducing a hollow bolt into the joint hole. The bolt gives the connection capacity a boost of approximately 20%. A series of laboratory tests have been carried out in order to verify the Rosette truss system in practice. In addition to compression tests on individual sections of different lengths, tests have also been done on small structural assemblies and on actual full-scale trusses of a span of 10 metres. Design calculations have been performed on selected roof truss geometries based on the test results, FE-analysis and on the Eurocode 3 and U.S.(AISI) design codes.