• Title/Summary/Keyword: Bottom outlet

Search Result 65, Processing Time 0.027 seconds

A Comparison of Various Governing Parameters on Hydrodynamic Stability in Interface on Small Solar Pond (소형태양수구내(小型太陽水構內) 중간경계면(中間境界面)에서 수력학적(水力學的) 안정(安定)에 관(關)한 각종(各種) 지배변수(支配變數)의 비교(比較))

  • Park, Ee-Dong
    • Solar Energy
    • /
    • v.5 no.2
    • /
    • pp.11-19
    • /
    • 1985
  • In this paper, the interface stability not to occur mixing and entrainment between the adjacent layers has been studied in the case of the selective withdrawal of a stratum and the injection in stratified fluid formed by the density difference in a small solar pond. There are stability parameter, Richardson number, Rayleigh number and Froude number as the parameters governing stability in order to measure the interface stability on the stratified fluid. The model which could measure the interface stability on the stratified fluid was the small solar pond composed by 1 meters wide, 2 meters high, and 5 meters long. In order to measure the interface stability on the stratified fluid at the inlet port, the middle section and the outlet port, Richardson number, Rayleigh number, and Froude number involved in the parameters governing the stability were calculated by means of the data resulted from the test of the study on hydrodynamic stability between the convective and nonconvective layers in that solar pond. Richardson number written by the ratio of inertia force to buoyancy force can be used in order to measure the stability on the stratified fluid related to the buoyancy force generated from the injection of fluid. Rayleigh number written by the product of Grashof number by Prandtl number can be used in order to measure the stability of the fluid related to the heat flux and diffusivity of viscosity. Froude number written by the ratio of gravity force to inertia force can be used in order to measure the stability of the nonhomogeneous fluid related to the density difference. As the result of calculating the parameters governing stability, the interface stability on the stratified fluid couldn't be identified below the 70cm height from the bottom of the solar pond, but it could be identified above the 70cm height from it at the inlet port, the middle section and the outlet port. When compared with such the three parameters as Richardson number, Rayleigh number, Froude number, the calculated result was in accord with them at inlet port, the middle section and the outlet port. Henceforth, it is learned that even though any of the three parameters is used for the purpose of measuring the interface stability on the stratified fluid, the result will be the same with them. It is concluded that all the use of Richardson number, Rayleigh number, and Froude number, is desirable and infallible to measure the interface stability on the stratified fluid in the case of considering the exist of the fluid flow and the heat flux like the model of the solar pond.

  • PDF

A Numerical Study on Beat Transfer from an Aluminum Foam Heat Sink by Impinging Air Jet in a Confined Channel (충돌 공기제트에서 국한 유로 내 발포 알루미늄 방열기의 열전달 수치해석)

  • Lee, Sang-Tae;Kim, Seo-Young;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.883-892
    • /
    • 2002
  • A numerical study has been carried out to investigate the flow and heat transfer from an aluminum foam heat sink in a confined channel. A uniform heat flux is given at the bottom of the aluminum foam heat sink, which is horizontally placed on the heated surface. The channel walls are assumed to be adiabatic. Cold air is supplied from the top opening of the channel and exhausted to the channel outlet. Comprehensive numerical solutions are acquired to the governing Wavier-Stokes and energy equations, using the Brinkman-Forchheimer extended Darcy model and the local thermal non-equilibrium model f3r the region of porous media. Details of flow and thermal fields are examined over wide ranges of the principal parameters; i.e., the Reynolds number Re, the height of heat sink h/H, porosity $\varepsilon$and pore diameter ratio $R_{H}$.

ESTIMATION OF LONG-TERM POLLUTANT REMOVAL EFFICIENCIES OF WET RETENTION/DETENTION BASINS USING THE WEANES MODEL

  • Youn, Chi-Hyueon;Pandit, Ashok;Cho, Han-Bum
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.215-219
    • /
    • 2005
  • A macro spreadsheet model, WEANES (Wet Pond Annual Efficiency Simulation Model), has been developed to predict the long-term or annual removal efficiencies of wet retention/detention basins. The model uses historical, site-specific, multi-year, rainfall data, usually available from a nearby National Oceanic and Atmospheric Administration (NOAA) climatological station to estimate basin efficiencies which are calculated based on annual mass loads. Other required input parameters are: 1) watershed parameters; drainage area, pervious curve number, directly connected impervious area, and ti me of concentration, 2) pond parameters; control and overflow elevations, pond side slopes, surface areas at control elevation and pond bottom; 3) outlet structure parameters; 4) pollutant event mean concentrations; and 5) pond loss rate which is defined as the net loss due to evaporation, infiltration and water reuse. The model offers default options for parameters such as pollutant event mean concentrations and pond loss rate. The model can serve as a design, planning, and permitting tool for consulting engineers, planners and government regulators.

  • PDF

Flow Analysis around the Multi-beam Robot in a Clean Room (클린룸 내 다관절 로봇 주위의 유동해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.122-127
    • /
    • 2015
  • We carried out three-dimensional flow analysis in a clean room. Flow field in a robot experiment system, induced from the moving robot, is numerically studied in this paper. The effects of moving robot in a clean room are investigated in order to find the section of dust accumulation. Contamination on the bottom produced from the moving robot is predicted from the analysis results from the flow fields. Results show that a large swirl flow is formed around the moving robot. Consequently, the optimal flow condition can be obtained by controlling the fluid velocity through the fixing of inlet or outlet position.

Performance evaluation of sea water heat exchanger installed in the submerged bottom-structure of floating architecture

  • Sim, Young-Hoon;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1062-1067
    • /
    • 2015
  • Floating architecture is a type of building that is geographically located on a sea or a river. It floats under the influence of buoyancy, and does not have an engine for moving it. Korea is a peninsula surrounded by sea except on the north side, so floating architectures have been mainly focused on two points: solving the issue of small territory and providing various leisure & cultural spaces. Floating architectures are expected to save energy effectively, if they use sea water heat, which is known to be clean energy with infinite reserves. To use sea water heat as the heat source and/or heat sink, this study proposes a model in which a sea water heat exchanger is embedded in the concrete structure in the lower part of the floating architecture that is submerged under the sea. Based on the results of performance evaluations of the sea water heat exchanger using CFD (computational fluid dynamics) analysis and mock-up experiments under various conditions, it is found out that the temperature difference between the inlet and outlet of the heat exchanger is in the range of $3.06{\sim}9.57^{\circ}C$, and that the quantity of heat transfer measured is in the range of 3,812~7,180 W. The CFD evaluation results shows a difference of 5% with respect to the results of mock-up experiment.

Unsteady Analysis of Hydraulic Behavior Characteristics in Water Treatment System Using CFD Simulation (CFD를 이용한 정수처리 공정 내 유량변동시 수리흐름 해석에 관한 연구)

  • Kim, Seong-Su;Choi, Jong-Woong;Park, No-Suk;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • The fluctuation of inlet flow to a water treatment plant makes a serious problem that it can change the outlet flowrate from each process abruptly. Since it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes, it is impossible for operators to cope with that stably. In order to investigate the characteristics of hydraulic behavior for rectangular sedimentation basin in water treatment plant, CFD(Computational Fluid Dynamics) simulation were employed. From the results of both CFD simulations, it was confirmed that time taken for the follow-up processes by the fluctuation in intake well can be estimated by the propagation velocity of surface waves. Also, it takes very short time for the surface wave occurred from the fluctuation of inlet flow to reach the latter processes. In the case of inlet flowerate being increased sharply, local velocity within sedimentation basin appeared as wave pattern and increased due to convection current. Also, it could be observed that vortex made local velocity in the vicinity of bottom rise.

Morphological Parameters of the Sludge Flocs in a Long Rectangular Secondary Settling Tank (장방형 침전지에서 길이에 따른 슬러지 floc의 형태에 관한 연구)

  • Kim, Youngchul;Lee, Jin-Woo;Kang, Min-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.468-474
    • /
    • 2006
  • In the secondary settling tanks, three different types of settling phenomena occurs; i.e., zone settling for sludge thickening in the bottom part of settling tank, and discrete and flocculent settling for clarification in the upper part. In this paper, morphological parameters of the floc in sludge blanket layers along the length of a long rectangular tank were investigated. The plant used for this study had a serious bulking problem caused by Microthrix parvicella. Floc size decreased as the surface area of settling tank increases, which indicates that in the secondary settling tank where zone settling believed to be predominant, free or flocculent type of settling contributes to floc size distributions. Large floc particles deposit in the front zone of settling tank, but small and loose flocs mostly in the zone near its outlet. On the other hand, filament length contained in one gram of sludge blanket solid increases along the flow direction. Large flocs with less filaments settle faster, but small flocs having more filaments result in poor settling. These results support function of microorganism selection occurring in secondary settling tank. In addition, designing a long rectangluar settling tank with double hoppers might be one of the ways of bulking control, but this idea has to be verified with a further study.

A Study of Co-Combustion Characteristics of North Korean Anthracite and Bituminous Coal in 2 MWe CFBC Power Plant (2 MWe 순환유동층 발전 플랜트에서 유연탄과 북한 무연탄 혼소시험 특성 연구)

  • Han, Keun-hee;Hyun, Ju-soo;Choi, Won-kil;Lee, Jong-seop
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.580-586
    • /
    • 2009
  • In this study, co-combustion characteristics of Chinese bituminous coal and North Korean anthracite were investigated using a 2 MWe scale circulating fluidized bed power plant. At first, the combustion efficiency of bituminous coal of China and Australia as a function of excess air ratio and temperature were observed. The results showed that the combustion efficiency was influenced by particle size and volatile content of coal, the combustion efficiency of Chinese bituminous coal was over 99.5%. The unburned carbon particles from fly ash and bottom ash were a content 5~7% and 0.3%, respectively. The combustion efficiency with the mixture ratio 20% of bituminous coal and anthracite decreased over 5% because of the increase of entrained particles by a small average particle size of anthracite in the combustor. However, the outlet concentration of $SO_2$ and $NO_x$ was not changed remarkably. The concentrations of the typical air pollutants such as $NO_x$ and $SO_2$ were 200~250 ppm($O_2$ 6%), 100~320 ppm($O_2$ 6%) respectively. The outlet concentration of $NO_x$ was decreased to 30~65% with $NH_3$ supplying rate of 2~13 l/min in SCR process. The $SO_x$ removal efficiency was up to 70% by in-furnace desulfurization using limestone with Ca/S molar of approximately 6.5. With wet scrubbing using $Mg(OH)_2$ as absorbent, the $SO_x$ removal efficiency reached 100% under near pH 5.0 of scrubbing liquid.

A Numerical Study on the Basic Design of Scrubber for Marine Diesel Engines (선박 디젤기관 스크러버의 기초설계에 관한 수치적 연구)

  • Lee, Won-Ju;Kim, In-Su;Choi, Yong-Seok;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.549-557
    • /
    • 2017
  • Numerical studies have been carried out on scrubbers, which are after-treatment devices to satisfy strengthened emission regulations for sulfur dioxide and particulate matter. We investigated the problems with existing scrubbers through numerical analysis and designed and analyzed a new swirl-type scrubber that could solve these problems. As a result, with the swirl-type scrubber, exhaust gas formed a vortex in the lower part of the device, and some of this gas was released along the guide vane through the bottom surface. In this case, the pressure gradient in the vertical direction was not large, but a pressure difference between the inside and outside of the baffle was generated. The shape of the exhaust gas stream was investigated, and when water was not sprayed, the exhaust gas flowed constantly to the outlet along the guide vane, in contrast to when water was sprayed. It was confirmed that the shape of the flow was influenced by the guide vane, nozzle arrangement and water pressure. In the case of the swirl-type scrubber, impact on engine back-pressure was minimal, because differential pressure at the inlet and outlet was less than half of that with a conventional scrubber.

Numerical Analysis of Heat Transfer Characteristics of Ribbed Channels with Different Film Cooling Hole Position (필름 냉각을 위한 리브드 채널의 홀 위치에 따른 열전달 특성 수치 해석)

  • Park, Jee Min;Moon, Joo Hyun;Lee, Hyung Ju;Lee, Seong Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.69-76
    • /
    • 2018
  • The present study analyzed the effect of film hole position of 45 degree ribbed cooling channel on film cooling performance of gas turbine blades. We also investigated the influence of the ribs under the fixed blowing ratio. Three-dimensional numerical model was constructed and extensive simulation was conducted using the commercial code (Fluent ver. 17.0) under steady-state condition. Base on the simulation results, We investigated the cooling effectiveness, flow velocity, streamline, and pressure coefficient. Moreover, We analyzed the effect of cooling hole position on ejection of the secondary flow caused by the rib structure. From the results, It was found that internal flow of the cooling channel forms a vortex pair in the counterclockwise from the top side, and clockwise from the bottom side. For the channels with ribs, the vortex flow generated by the ribs caused a higher pressure difference near the hole outlet, resulting in at least 12% higher cooling effectiveness than the channel without ribs. Additionally, when the hole is located on the left side of the ribbed channel (Rib-Left), it can be found that the secondary flow generated by the ribs hits against wall surface near the hole to form a flow in the direction of the hole inclination angle. Therefore, It is considered that the region where the cooling gas discharged to the blade surface stays in the main flow boundary layer is wider than the other cases. In this case, The largest pressure coefficient difference was observed near the outlet of the hole, and as a result, the discharge of the cooling gas was accelerated and the cooling efficiency was slightly increased.