• Title/Summary/Keyword: Bottom Structure

Search Result 1,362, Processing Time 0.031 seconds

Consideration of the Structural Response of High Speed Aluminum Planning Boat Stiffened Plate Member subjected to the Simplified Equivalent Dynamic Design Pressure (동하중 등가 설계압을 받는 고속 경구조선 알루미늄 보강판부재의 구조응답 고찰)

  • HAM JUH-HYEOK;KANG BYUNG-YOON;CHOO KYUNG-HOON
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.408-413
    • /
    • 2004
  • High speed planning boats also have been required more and more the rational strength analysis and evaluation for the optimal structural design in respect of the structural lightness according to the high speed trend. Even though the suggestion of the simple type equation for the equivalent dynamic pressure is reasonable to design the scantling of ship structure conveniently, many research activities for more reasonable improvement of the simple design pressure, have been continued to suggest the more accurate equivalent static description of tire structural response such as the deflection and stress of hull structure. In this research, we focus on the aluminum bottom stiffened plate structure in which structural scantling is mainly depend on the local loads such as dynamic or impact pressure without other load effects and structural response for the simple dynamic equivalent pressure was investigated through the structural analysis. In order to investigate the structural response of the bottom stiffened plate structure subjected to the dynamic equivalent design pressure, linear and nonlinear structural analysis of the bottom stiffened plate structure of 4.3 ton aluminum planning boat was performed based on the equivalent static applied loads which were derived from the KR regulation and representative one among various dynamic equivalent pressure equations. From above analysis results, we found that the response such as deflection and stress of plate member was similar with the response results of one plate member model with fixed boundary, which was published previous paper and in case of KR design loading, all response of stiffened plate structure were within elastic limit. Through the nonlinear analysis, nearly elastic behavior including the slight geometrical nonlinear response was dominant but plastic local zone was appeared at $85\%$ limit load. Therefore, we can say that through tire linear and nonlinear analysis, this stiffened plate member has no structural strength problem based on the yield criteria in case within $60\%$ limit load except the other strength point of view such as the fatigue and buckling problem.

  • PDF

An Analysis of the Wave Propagation of the flow-induced Elastic Stress Waves in the Layered Structure and it's 1 D.O.F. Modelling (적층구조물내의 유체유발 탄성응력파의 전파해석 및 1 자유도계 모델링)

  • Lee, J.K.;Lee, U.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.132-139
    • /
    • 1995
  • Turbulent boundary layer pressure fluctuation exerted on the surface of a structure can give rise to a elastic stress wave on the surface of the structure. The stress wave so called surface wave, will not only propagate along the surface of structure but also penerate into the structure. To reduce the transmission of stress wave into the structure the elastomer layer is usually attactched on the surface of structure. The transfer function, which is defined herein as the ratio of stress waves at the surface and bottom of the elastomer layer, is derved by use of the cylindrical coordinates system. The elastodynamics of the elastomer layer subjected to the turbulent boundary layer pressure fluctuation is represented by the simplified one degree-of-freedom model for easy prediction of the stress wave transmission as well as efficient design of the elastomer layer.

  • PDF

Characteristics of Vortex Structure and Its Shear Velocity in a Scour Hole

  • 김진홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.45-59
    • /
    • 1992
  • At downstream part of the hydraulic structures such as spiliway or drainage gate, jet flow can occur by gate opening. If stream bed is not hard or bed protection is not sufficient, scour hole will be formed due to high shear stress of the jet flow. We call this primary scour. Once the scour hole is formed, a vortex occurs in it and this vortex causes additional scour. We call this secondary scour. The primary scour proceeds to downstream together with flow direction but the secondary one proceeds to upstream direction opposite to it. If the secondary one continues and reaches to the hydraulic structure, it can undermine the bottom of hydraulic structure and this will lead to failure of structure itself. Thus, it is necessary to know the physical features of the vortex structure in a scour hole, which is the main mechanism of the secondary scour. This study deals with the characteristics of the vortex structure and its shear stress which causes the secondary scour.

  • PDF

Nonlinear Wave Transformation of a Submerged Coastal Structure (잠수구조물에 의한 비선형파랑변형에 관한 연구)

  • Kim, W. K.;Kang, I. S.;Kwak, K. S.;Kim, D. S.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.41-47
    • /
    • 1994
  • The present paper discusses the nonlinear wave deformation due to a submerged coastal structure. Theory is based on the frequency-domain method using the third order perturbation and boundary integral method. Theoretical development to the second order perturbation and boundary integral method. Theoretical development to the second order Stokes wave for a bottom-seated submerged breakwater to the sea floor is newly expanded to the third order for a submerged coastal structure shown in Figure 1. Validity is demonstrated by comparing numerical results with the experimental ones of a rectangular air chamber structure, which has the same dimensions as that of this study. Nonlinear waves become larger and larger with wave propagation above the crown of the structure, and are transmitted to the onshore side of the structure. These characteristics are shown greatly as the increment of Ursell number on the structure. The total water profile depends largely on the phase lag among the first, second and third order component waves.

  • PDF

Shaping Formation and Behaviour Characteristic for SCST Structure by Cable-tensioning (Cable-tensioning에 의한 SCST 구조의 형상 형성과 거동 특성)

  • Kim, Jin-Woo;Kwon, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.819-825
    • /
    • 2008
  • This paper describes the shaping formation and the erection of SCST structure by cable-tensioning. It could be a fast and economical method for constructing the space structure consisted with uniform pyramids by cable-tensioning of the cable in bottom chords. In the initial layout, the top chords and web members are left at their true length, the bottom chords are given gaps in proportion to the desired final shape. The feasibility of the proposed shaping method and the reliability of the established geometric model were confirmed with nonlinear finite element analysis and an experimental investigation on small scale and full size test models. As a result, the behaviour characteristic of MERO joint is very significant in shaping analysis of space structure. This study suggests the most reasonable modeling technique for the prediction of shaping in practices. And it is shown the characteristic of the behavior in shaping test for practical design purposes.

Seismic response of steel reinforced concrete frame-bent plant of CAP1400 nuclear power plant considering the high-mode vibration

  • Biao Liu;Zhengzhong Wang;Bo Zhang;Ningjun Du;Mingxia Gao;Guoliang Bai
    • Steel and Composite Structures
    • /
    • v.46 no.2
    • /
    • pp.221-236
    • /
    • 2023
  • In order to study the seismic response of the main plant of steel reinforced concrete (SRC) structure of the CAP1400 nuclear power plant under the influence of different high-mode vibration, the 1/7 model structure was manufactured and its dynamic characteristics was tested. Secondly, the finite element model of SRC frame-bent structure was established, the seismic response was analyzed by mode-superposition response spectrum method. Taking the combination result of the 500 vibration modes as the standard, the error of the base reactions, inter-story drift, bending moment and shear of different modes were calculated. Then, based on the results, the influence of high-mode vibration on the seismic response of the SRC frame-bent structure of the main plant was analyzed. The results show that when the 34 vibration modes were intercepted, the mass participation coefficient of the vertical and horizontal vibration mode was above 90%, which can meet the requirements of design code. There is a large error between the seismic response calculated by the 34 and 500 vibration modes, and the error decreases as the number of modes increases. When 60 modes were selected, the error can be reduced to about 1%. The error of the maximum bottom moment of the bottom column appeared in the position of the bent column. Finally, according to the characteristics of the seismic influence coefficient αj of each mode, the mode contribution coefficient γj•Xji was defined to reflect the contribution of each mode to the seismic action.

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

Measurement Tests of Friction Coefficient of Precast Concrete Used in Haber Construction (항만용 Precast Concrete 구조물의 마찰계수 측정 실험)

  • Kim, Myung-Sik;Baek, Dong-Il;Kim, Kang-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.73-76
    • /
    • 2006
  • The shape and dimension of precast concrete structure used in habor construction(caisson, block, etc.) are considered productive facility abilities, demanded minimum dimension in work of each member, the relation between the depth of water and a location of leaving, work conditions of towing and leaving, after leaving, differential settlement, etc. As this study examined friction resistance effect of financially designed precast concrete structure formed convex in bottom and stone mound.

  • PDF

A Pilot Study on Emissions of Air Pollutants Produced from Incineration of Some Municipal Solid Wastes

  • Kim, Haen-Gah;Lee, Byeong-Kyu;Cho, Jung-Bum
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.49-56
    • /
    • 2006
  • This pilot study focuses on emissions characterization of air pollutants produced from incineration of some municipal solid wastes (MSWs). The MSWs incinerated by an electric furnace maintained up to $600^{\circ}C$ included food, paper, and plastic wastes. The pollutants analyzed in this study included concentrations of volatile organic compounds (VOCs), bottom ash contents, and heavy metals extracted from the bottom ash of each waste. The VOCs identified were classified based on their chemical structure. The total emissions of VOCs produced from incineration of the papers were identified as the highest followed by those from the plastics and the food wastes. Aliphatic alkenes were major VOC compounds produced from incineration of plastic or food wastes, while furans were major VOCs produced from incineration of papers. The second major VOCs produced from incineration of food, plastics, and papers were aromatics. In particular, hazardous air pollutants such as benzene were produced with considerable amount of emission concentration. The bottom ash contents of papers were usually much higher than those of food or plastic wastes. The bottom ash contents produced from incineration of food and plastics were much lower than those of other MSWs. In analysis of heavy metals extracted by an ultrasonic method from the bottom ashes of the papers, high concentrations of heavy metals were identified from incineration of newspapers and box (cardboard). In addition, it was identified that the general public might be exposed to considerable amounts of lead concentrations during incineration processes and uses of paper cup and from ashes.

Microclimate, Growth and Yield in Wheat under North-South and East-West Row Orientation (이랑방향에 따른 밀 군락의 미기상과 생육 및 수량)

  • Yoon, Seong-Tak;Jerry, Johnson
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.155-159
    • /
    • 2004
  • This experiment was carried out to evaluate the microclimate of wheat canopy, growth and yield characteristics of wheat under north-south and east-west row orientation. The variety used in this experiment was "AG South 2000", which was developed in USA. Solar radiation, air temperature, relative humidity, and soil temperature were monitored by data logger from March to May in 2002, The ratio of light penetration to the bottom from the upper canopy was 36.8% in north-south and 21.4% in east-west row orientation. Temporal march of light penetration to the bottom from March to May decreased as wheat developed canopy structure and decreased a little from May as plant were matured. The highest light penetration to the bottom from upper canopy occurred at 13:00 in both north-south and east-west row orientations, respectively which were 36 times in north-south and 27 times in east-west row orientation, respectively. Daily maximum temperature at the bottom of canopy occurred at 14:00 with 29 times in north-south, while 19 times were obtained at 14:00 and 15:00, respectively in east-west row orientation. Relative humidity at the bottom of the canopy in east-west yow orientation showed higher than that of north-south row orientation. Occurrence of daily maximum soil temperature of north-south showed one hour later compared with east-west yow orientation. 1000 grain weight and test weight of north-south row orientation was higher than those of east-west vow orientation. Correlation coefficient between solar radiation of upper canopy and 1000 grain weight showed r=$0.8132^{*}$, and between air temperature of upper canopy and number of spikes per $\textrm{m}^{2}$ and 1000 grain weight showed significant positive correlation with r=$0.8139^{*}$, and r=$0.8293^{*}$, respectively.