• 제목/요약/키워드: Bottleneck Detection

검색결과 39건 처리시간 0.037초

시그널 기반 전자패키지 결함검출진단 기술과 인공지능의 응용 (Signal-Based Fault Detection and Diagnosis on Electronic Packaging and Applications of Artificial Intelligence Techniques)

  • 강태엽;김택수
    • 마이크로전자및패키징학회지
    • /
    • 제30권1호
    • /
    • pp.30-41
    • /
    • 2023
  • 고성능 전자제품의 수요가 증가함에 따라 이를 구현하기 위한 고성능 반도체의 수요도 증가하고 있다. 그러나 성능이 높아지고 운용환경이 다양해질수록 전자패키지의 신뢰성이 회로 전체의 성능과 신뢰성에 병목이 되고 있는 상황이다. 이에 전자패키지에 대한 결함검출 및 진단 기술이 주목받고 있는데, IEEE 이종집적화 로드맵에서는 신뢰성 물리 및 인공지능 기술을 융합한 디지털트윈 전략을 제시하고 있다. 따라서 본 논문에서는 시그널 기반의 전자패키지 결함검출 및 진단 기술을 리뷰하고, 인공지능을 접목한 연구사례를 분석하고자 한다. 더불어 이러한 인공지능 응용 연구의 동향과 전망을 함께 제시한다.

음향 이벤트 검출을 위한 DenseNet-Recurrent Neural Network 학습 방법에 관한 연구 (A study on training DenseNet-Recurrent Neural Network for sound event detection)

  • 차현진;박상욱
    • 한국음향학회지
    • /
    • 제42권5호
    • /
    • pp.395-401
    • /
    • 2023
  • 음향 이벤트 검출(Sound Event Detection, SED)은 음향 신호에서 관심 있는 음향의 종류와 발생 구간을 검출하는 기술로, 음향 감시 시스템 및 모니터링 시스템 등 다양한 분야에서 활용되고 있다. 최근 음향 신호 분석에 관한 국제 경연 대회(Detection and Classification of Acoustic Scenes and Events, DCASE) Task 4를 통해 다양한 방법이 소개되고 있다. 본 연구는 다양한 영역에서 성능 향상을 이끌고 있는 Dense Convolutional Networks(DenseNet)을 음향 이벤트 검출에 적용하기 위해 설계 변수에 따른 성능 변화를 비교 및 분석한다. 실험에서는 DenseNet with Bottleneck and Compression(DenseNet-BC)와 순환신경망(Recurrent Neural Network, RNN)의 한 종류인 양방향 게이트 순환 유닛(Bidirectional Gated Recurrent Unit, Bi-GRU)을 결합한 DenseRNN 모델을 설계하고, 평균 교사 모델(Mean Teacher Model)을 통해 모델을 학습한다. DCASE task4의 성능 평가 기준에 따라 이벤트 기반 f-score를 바탕으로 설계 변수에 따른 DenseRNN의 성능 변화를 분석한다. 실험 결과에서 DenseRNN의 복잡도가 높을수록 성능이 향상되지만 일정 수준에 도달하면 유사한 성능을 보임을 확인할 수 있다. 또한, 학습과정에서 중도탈락을 적용하지 않는 경우, 모델이 효과적으로 학습됨을 확인할 수 있다.

TCP와 UDP 플로우 간의 공정성 개선을 위한 새로운 큐 관리 알고리즘 (A New Queue Management Algorithm for Improving Fairness between TCP and UDP Flows)

  • 채현석;최명렬
    • 정보처리학회논문지C
    • /
    • 제11C권1호
    • /
    • pp.89-98
    • /
    • 2004
  • 인터넷의 혼잡상황을 해결하기 위하여 제안된 RED(Random Early Detection)와 같은 능동적 큐 관리(Active Queue Management) 알고리즘들은 TCP 데이터에 대하여 우수한 혼잡제어 효과를 나타낸다. 그러나 TCP와 UDP가 병목 링크를 공유하는 경우 불공정성 문제와 큐에서의 지연시간이 길어지는 문제점을 가지고 있다. 본 논문에서는 공정성을 개선함과 동시에 큐 지연시간을 감소할 수 있는 새로운 큐 관리 알고리즘인 PSRED(Protocol Sensitive RED) 알고리즘을 제안하였다. PSRED 알고리즘은 트래픽의 프로토콜 필드를 이용하여 플로우의 종류를 구분하고 각기 다른 패킷폐기함수를 적용함으로써 공정성을 개선하고 평균 큐 길이를 줄일 수 있다.

스케일러블 그래픽스 알고리즘 (Scalable Graphics Algorithms)

  • 윤성의
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 3부
    • /
    • pp.224-224
    • /
    • 2008
  • Recent advances in model acquisition, computer-aided design, and simulation technologies have resulted in massive databases of complex geometric data occupying multiple gigabytes and even terabytes. In various graphics/geometric applications, the major performance bottleneck is typically in accessing these massive geometric data due to the high complexity of such massive geometric data sets. However, there has been a consistent lower growth rate of data access speed compared to that of computational processing speed. Moreover, recent multi-core architectures aggravate this phenomenon. Therefore, it is expected that the current architecture improvement does not offer the solution to the problem of dealing with ever growing massive geometric data, especially in the case of using commodity hardware. In this tutorial, I will focus on two orthogonal approaches--multi-resolution and cache-coherent layout techniques--to design scalable graphics/geometric algorithms. First, I will discuss multi-resolution techniques that reduce the amount of data necessary for performing geometric methods within an error bound. Second, I will explain cache-coherent layouts that improve the cache utilization of runtime geometric applications. I have applied these two techniques into rendering, collision detection, and iso-surface extractions and, thereby, have been able to achieve significant performance improvement. I will show live demonstrations of view-dependent rendering and collision detection between massive models consisting of tens of millions of triangles on a laptop during the talk.

  • PDF

사전 학습된 딥러닝 모델의 Mel-Spectrogram 기반 기침 탐지를 위한 Attention 기법에 따른 성능 분석 (Attention Modules for Improving Cough Detection Performance based on Mel-Spectrogram)

  • 박창준;김인기;김범준;전영훈;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.43-46
    • /
    • 2023
  • 호흡기 관련 전염병의 주된 증상인 기침은 공기 중에 감염된 병원균을 퍼트리며 비감염자가 해당 병원균에 노출된 경우 높은 확률로 해당 전염병에 감염될 위험이 있다. 또한 사람들이 많이 모이는 공공장소 및 실내 공간에서의 기침 탐지 및 조치는 전염병의 대규모 유행을 예방할 수 있는 효율적인 방법이다. 따라서 본 논문에서는 탐지해야 하는 기침 소리 및 일상생활 속 발생할 수 있는 기침과 유사한 배경 소리 들을 Mel-Spectrogram으로 변환한 후 시각화된 특징을 CNN 모델에 학습시켜 기침 탐지를 진행하며, 일반적으로 사용되는 사전 학습된 CNN 모델에 제안된 Attention 모듈의 적용이 기침 탐지 성능 향상에 도움이 됨을 입증하였다.

  • PDF

An Empirical Study of Absolute-Fairness Maximal Balanced Cliques Detection Based on Signed Attribute Social Networks: Considering Fairness and Balance

  • Yixuan Yang;Sony Peng;Doo-Soon Park;Hye-Jung Lee;Phonexay Vilakone
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.200-214
    • /
    • 2024
  • Amid the flood of data, social network analysis is beneficial in searching for its hidden context and verifying several pieces of information. This can be used for detecting the spread model of infectious diseases, methods of preventing infectious diseases, mining of small groups and so forth. In addition, community detection is the most studied topic in social network analysis using graph analysis methods. The objective of this study is to examine signed attributed social networks and identify the maximal balanced cliques that are both absolute and fair. In the same vein, the purpose is to ensure fairness in complex networks, overcome the "information cocoon" bottleneck, and reduce the occurrence of "group polarization" in social networks. Meanwhile, an empirical study is presented in the experimental section, which uses the personal information of 77 employees of a research company and the trust relationships at the professional level between employees to mine some small groups with the possibility of "group polarization." Finally, the study provides suggestions for managers of the company to align and group new work teams in an organization.

음향 장면 분류를 위한 경량화 모형 연구 (Light weight architecture for acoustic scene classification)

  • 임소영;곽일엽
    • 응용통계연구
    • /
    • 제34권6호
    • /
    • pp.979-993
    • /
    • 2021
  • 음향 장면 분류는 오디오 파일이 녹음된 환경이 어디인지 분류하는 문제이다. 이는 음향 장면 분류와 관련한 대회인 DCASE 대회에서 꾸준하게 연구되었던 분야이다. 실제 응용 분야에 음향 장면 분류 문제를 적용할 때, 모델의 복잡도를 고려하여야 한다. 특히 경량 기기에 적용하기 위해서는 경량 딥러닝 모델이 필요하다. 우리는 경량 기술이 적용된 여러 모델을 비교하였다. 먼저 log mel-spectrogram, deltas, delta-deltas 피쳐를 사용한 합성곱 신경망(CNN) 기반의 기본 모델을 제안하였다. 그리고 원래의 합성곱 층을 depthwise separable convolution block, linear bottleneck inverted residual block과 같은 효율적인 합성곱 블록으로 대체하고, 각 모델에 대하여 Quantization를 적용하여 경량 모델을 제안하였다. 경량화 기술을 고려한 모델은 기본 모델에 대비하여 성능이 비슷하거나 조금 낮은 성능을 보였지만, 모델 사이즈는 503KB에서 42.76KB로 작아진 것을 확인하였다.

핵의학 팬텀 영상에서 초매개변수 변화에 따른 YOLOv5 모델의 성능평가 (Performance Evaluation of YOLOv5 Model according to Various Hyper-parameters in Nuclear Medicine Phantom Images)

  • 이민관;박찬록
    • 한국방사선학회논문지
    • /
    • 제18권1호
    • /
    • pp.21-26
    • /
    • 2024
  • You only look once v5 (YOLOv5)는 객체 검출 과정에 우수한 성능을 보이고 있는 딥러닝 모델 중 하나다. 그러므로 본 연구의 목적은 양전차방출단층촬영 팬텀 영상에서 다양한 하이퍼 파라미터에 따른 YOLOv5 모델의 성능을 평가했다. 데이터 세트는 500장의 QIN PET segmentation challenge로부터 제공되는 오픈 소스를 사용하였으며, LabelImg 소프트웨어를 사용하여 경계박스를 설정했다. 학습의 적용된 하이퍼파라미터는 최적화 함수 SDG, Adam, AdamW, 활성화 함수 SiLu, LeakyRelu, Mish, Hardwish와 YOLOv5 모델 크기에 따라 nano, small, large, xlarge다. 학습성능을 평가하기 위한 정량적 분석방법으로 Intersection of union (IOU)를 사용하였다. 결과적으로, AdmaW의 최적화 함수, Hardwish의 활성화 함수, nano 크기에서 우수한 객체 검출성능을 보였다. 결론적으로 핵의학 영상에서의 객체 검출 성능에 대한 YOLOV5 모델의 유용성을 확인하였다.

Scalable Big Data Pipeline for Video Stream Analytics Over Commodity Hardware

  • Ayub, Umer;Ahsan, Syed M.;Qureshi, Shavez M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권4호
    • /
    • pp.1146-1165
    • /
    • 2022
  • A huge amount of data in the form of videos and images is being produced owning to advancements in sensor technology. Use of low performance commodity hardware coupled with resource heavy image processing and analyzing approaches to infer and extract actionable insights from this data poses a bottleneck for timely decision making. Current approach of GPU assisted and cloud-based architecture video analysis techniques give significant performance gain, but its usage is constrained by financial considerations and extremely complex architecture level details. In this paper we propose a data pipeline system that uses open-source tools such as Apache Spark, Kafka and OpenCV running over commodity hardware for video stream processing and image processing in a distributed environment. Experimental results show that our proposed approach eliminates the need of GPU based hardware and cloud computing infrastructure to achieve efficient video steam processing for face detection with increased throughput, scalability and better performance.

개선된 PF_RING을 이용한 고성능 패킷 캡쳐 (Improved PF_RING for High Performance Packet Capture)

  • 단조위;김용수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.1012-1015
    • /
    • 2008
  • The packet capturing becomes a bottleneck in the network intrusion detection and monitoring system as the network performance developing. Many approaches, zero copy, interrupt coalescing and NAPI which attempt to improve packet capturing performance of Linux, are inefficient. PF_RING is a new type of network socket that dramatically improves the packet capture speed, but not perfect. This paper proposes some solutions which can improve the memory utilization and save some data copy time based on the commodity network adapters rather than on the commercial network adapters.