• Title/Summary/Keyword: Botrytis rot

Search Result 66, Processing Time 0.024 seconds

Isolation and Characterization of 𝛽-Glucosidase-Producing Yeast, Rhodotorula sp. GYP-1 (𝛽-Glucosidase 생성 효모 Rhodotorula sp. GYP-1의 분리 및 특성)

  • Hyun-Soo Roh;Min-Young Kwon;Sol-Bi Kim;Jae-Eun Cho;Song-Ih Han
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1126-1135
    • /
    • 2023
  • Nine microbial strains were isolated from the byproduct of ginseng processing and field of ginseng cultivation. Two strains among them were confirmed. Phylogenetic analysis of these 𝛽-Glucosidase strains confirmed that strain GYP-1 belongs to the Rhodotorula and strain GYP-3-3 belong to genus Brachybacterium. Rhodotorula sp. GYP-1 was finally selected due to its high biomass production. The 𝛽-Glucosidase activity of Rhodotorula sp. GPY-1 was assessed at 30 ℃, and Higher than 70% of the enzyme activity was maintained at the temperature range of 20-40℃. Although the optimum pH for the highest enzyme activity was pH 5.0, the enzyme was stable throughout the pH range of 5.0-8.0. In addition, Rhodotorula sp. demonstrated antifungal activity against the ginseng root rot disease caused by Botrytis.

Isolation and Characterization of Oligotrophic Bacteria Possessing Induced Systemic Disease Resistance against Plant Pathogens

  • Han, Song-Hee;Kang, Beom-Ryong;Lee, Jang-Hoon;Kim, Hyun-Jung;Park, Ju-Yeon;Kim, Jeong-Jun;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.68-74
    • /
    • 2012
  • Biocontrol microbes have mainly been screened among large collections of microorganisms $via.$ nutrient-rich $in$ $vitro$ assays to identify novel and effective isolates. However, thus far, isolates from only a few genera, mainly spore-forming bacilli, have been commercially developed. In order to isolate field-effective biocontrol microbes, we screened for more than 200 oligotrophic bacterial strains, isolated from rhizospheres of various soil samples in Korea, which induced systemic resistance against the soft-rot disease caused by $Pectobacterium$ $carotovorum$ SCC1; we subsequently conducted in $planta$ bioassay screening. Two oligotrophic bacterial strains were selected for induced systemic disease resistance against the $Tobacco$ $Mosaic$ $Virus$ and the gray mold disease caused by $Botrytis$ $cinerea$. The oligotrophic bacterial strains were identified as $Pseudomonas$ $manteilii$ B001 and $Bacillus$ $cereus$ C003 by biochemical analysis and the phylogenetic analysis of the 16S rRNA sequence. These bacterial strains did not exhibit any antifungal activities against plant pathogenic fungi but evidenced several other beneficial biocontrol traits, including phosphate solubilization and gelatin utilization. Collectively, our results indicate that the isolated oligotrophic bacterial strains possessing induced systemic disease resistance could provide useful tools as effective biopesticides and might be successfully used as cost-effective and preventive biocontrol agents in the field.

Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi

  • Nguyen, Van Minh;Woo, E-Eum;Kim, Ji-Yul;Kim, Dae-Won;Hwang, Byung Soon;Lee, Yoon-Ju;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.333-338
    • /
    • 2015
  • In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria.

Effects of Fungicides on Inhibition of in Vitro Strawberry Pollen Germination (In Vitro에서 살균제의 딸기 화분발아 억제 효과)

  • Nam, Myeong Hyeon;Kim, Hyun Sook;Choi, Je Hyun;Lee, He Duck
    • Horticultural Science & Technology
    • /
    • v.31 no.5
    • /
    • pp.633-639
    • /
    • 2013
  • Fungicide applications are required to prevent the strawberry from Botrytis fruit rot and powdery mildew that infect open strawberry flowers, however, their effects of fungicides on pollen germination of strawberry have been rarely documented, particularly those from recently developed active fungicidal ingredients. In this study we have evaluated the effects of 24 commercial fungicidal formulations and 6 organic materials on pollen germination in 3 strawberry cultivars using in vitro assays. Pollens from strawberry had higher germination rates on agar with sucrose of 18% and $25^{\circ}C$ than other tested conditions. Pollen germination rates of cvs. Seolhyang, Maehyang, and Kumhyang at 18% sucrose and $25^{\circ}C$ were 15.3, 18.4 and 30.7%, respectively. Pyraclostrobin, azoxystrobin, kresoxim-methyl, dichlofluanid, iminoctadine tris, and sulfur showed the strongest inhibitory efficacy with the germination rates of more than 93.8% compared to the no-fungicide control. Germination was not significantly affected by simeconazole and procymidone. This in vitro germination study may provide information useful for selecting fungicides in flowering stage to strawberry farmers.

Effects of Overwintering Disease Prevention in Korean Ginseng(Panax ginseng C.A. Meyer) by an Agronomical Control Measure in Paddy Field (논 재배 인삼의 월동병해 발생경감을 위한 경종적 처리효과)

  • Seong, Bong-Jae;Kim, Sun-Ick;Lee, Ka-Soon;Kim, Hyun-Ho;Kang, Yun Kyu;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.152-158
    • /
    • 2019
  • This study was conducted to develop and prove the effects of an agronomical pest control measure on ginseng cultivated by direct seeding in paddy field, and the results obtained are as follows. Decomposition of ginseng in field during overwintering was due to gray mold rot caused by Botrytis cinerea, which occurred in October or November of 2016 and intensified in February and March the following year. The occurrence rate of gray mold rot based on shading materials was 6.5%, 16.8%, and 29.5% with light-proof paper, PE shade net, and rice straw shade, respectively. The initial infection occurred in the leaves prior to wintering and secondary infection occurred in the stems after wintering. The rate of screrotium formation by gray mold in the above-ground parts of ginseng tended to increase: 26.6% on October 20, 33.7% in November 20, and 41.8% on December 20. The force needed to remove the leaves and stems from withered ginseng was 0.2, 0.94, 2.5, and 5 kg for 1-, 2-, 3-, and 4- and 5-year holds; the force required was 1 kg after wintering, making it relatively easy to remove. The disease incidence rate after the removal of leaves and stems was 2.5%, 1.2%, and 2.2% in 4-, 5-, and 6-year-old plants, respectively, and a disease high incidence rate of 8.8%, 13.0%, and 18.2%, respectively, was seen when the leaves and stems were not removed. In both transplanting and direct seeding, the miss-planted rate decreased and the germination rate increased when shading material was removed and the surface of ridge was covered with soil or vinyl.

Effect of Harvest Time, Precooling, and Storage Temperature for Keeping the Freshness of 'Maehyang' Strawberry for Export (수출딸기 '매향'의 신선도 유지를 위한 수확시간, 예냉 및 저장온도의 효과)

  • Park, Ji Eun;Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.404-410
    • /
    • 2012
  • This study was conducted to examine effects of harvest time (09:00 vs. 14:00), precooling at $4^{\circ}C$ vs. no precooling, and storage temperature (4 vs. $8^{\circ}C$) on the storage life of 'Maehyang' strawberry fruits for export. Fruits at a 60% ripe stage were harvested from a commercial greenhouse in Gyeongsangnamdo, Jinju on May 4, 2010. Fruits were precooled by a forced draft cooling for three hours, transported for about 30 minutes and then stored, immediately. Small precoolers set in the farm were used for precooling. Fruits were placed in constant temperature chamber (4 or $8^{\circ}C$) after packaging using PVC wrap and a cardboard box. Fruits were examined for their changes in weight, hardness, Hunter color values, soluble solids content (SSC), and incidence of gray mold (Botrytis cinerea) during storage at a two days interval from May 6 to May 14, 2010. Hardness and SSC decreased as the ripening stage progressed. The Hunter's 'L' and 'a' value of fruit color decreased as time passed. Also, fresh weight decreased during storage at all temperatures. Soft rot appeared on epidermal tissues and followed by gray mold. Incidence of gray mold was greater at $8^{\circ}C$ storage temperature than in $4^{\circ}C$ storage temperature. However, no difference by the harvested time and precooling. The results indicate that effectiveness for keeping the freshness was best achieved by precooling at $4^{\circ}C$ and storage at $4^{\circ}C$, respectively.