• Title/Summary/Keyword: Boron nitride nanotubes

Search Result 29, Processing Time 0.036 seconds

Improvement of Thermal Conductivity of Poly(dimethyl siloxane) Composites Filled with Boron Nitride and Carbon Nanotubes (보론 나이트라이드와 탄소나노튜브로 충전된 실리콘 고무의 열전도도 향상)

  • Ha, Jin-Uk;Hong, Jinho;Kim, Minjae;Choi, Jin Kyu;Park, Dong Wha;Shim, Sang Eun
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.722-729
    • /
    • 2013
  • In order to enhance the thermal conductivity of poly(dimethyl siloxane) (PDMS), boron nitride (BN) and carbon nanotubes (CNTs) were incorporated as the thermally conductive fillers. The amount of BN was increased from 0 to 100 phr (parts per hundred rubber) and the amount of CNTs was increased from 0 to 4 phr at a fixed amount of the boron nitride (100 phr). The thermal conductivity of the composites increased with an increasing concentration of BN, but the incorporation of CNTs had only a slight effect on the enhancement of thermal conductivity. Unexpectedly, the thermal degradation of the composites was accelerated by the addition of CNTs in 100 phr BN filled PDMS. Activation energy for thermal decomposition of the composites was calculated using the Horowitz-Metzger method. The curing behavior, electrical resistivity, and mechanical properties of PDMS filled with BN and CNTs were investigated.

Synthesis of Boron Nitride Nanotubes via inductively Coupled thermal Plasma process Catalyzed by Solid-state ammonium Chloride

  • Chang, Mi Se;Nam, Young Gyun;Yang, Sangsun;Kim, Kyung Tae;Yu, Ji Hun;Kim, Yong-Jin;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.120-125
    • /
    • 2018
  • Boron nitride nanotubes (BNNTs) are receiving great attention because of their unusual material properties, such as high thermal conductivity, mechanical strength, and electrical resistance. However, high-throughput and high-efficiency synthesis of BNNTs has been hindered due to the high boiling point of boron (${\sim}4000^{\circ}C$) and weak interaction between boron and nitrogen. Although, hydrogen-catalyzed plasma synthesis has shown potential for scalable synthesis of BNNTs, the direct use of $H_2$ gas as a precursor material is not strongly recommended, as it is extremely flammable. In the present study, BNNTs have been synthesized using radio-frequency inductively coupled thermal plasma (RF-ITP) catalyzed by solid-state ammonium chloride ($NH_4Cl$), a safe catalyst materials for BNNT synthesis. Similar to BNNTs synthesized from h-BN (hexagonal boron nitride) + $H_2$, successful fabrication of BNNTs synthesized from $h-BN+NH_4Cl$ is confirmed by their sheet-like properties, FE-SEM images, and XRD analysis. In addition, improved dispersion properties in aqueous solution are found in BNNTs synthesized from $h-BN+NH_4Cl$.

Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • v.33 no.4
    • /
    • pp.509-523
    • /
    • 2019
  • In the present work, the buckling analysis of micro sandwich plate with an isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets is studied. In this research, two cases for core of micro sandwich plate is considered that involve five isotropic Devineycell materials (H30, H45, H60, H100 and H200) and an orthotropic material also two cases for facesheets of micro sandwich plate is illustrated that include piezoelectric layers reinforced by carbon and boron-nitride nanotubes and polymeric matrix reinforced by carbon nanotubes under temperature-dependent and hydro material properties on the elastic foundations. The first order shear deformation theory (FSDT) is adopted to model micro sandwich plate and to apply size dependent effects from modified strain gradient theory. The governing equations are derived using the minimum total potential energy principle and then solved by analytical method. Also, the effects of different parameters such as size dependent, side ratio, volume fraction, various material properties for cores and facesheets and temperature and humidity changes on the dimensionless critical buckling load are investigated. It is shown from the results that the dimensionless critical buckling load for boron nitride nanotube is lower than that of for carbon nanotube. It is illustrated that the dimensionless critical buckling load for Devineycell H200 is highest and lowest for H30. Also, the obtained results for micro sandwich plate with piezoelectric facesheets reinforced by carbon nanotubes (case b) is higher than other states (cases a and c).The results of this research can be used in aircraft, automotive, shipbuilding industries and biomedicine.

Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT

  • Semmah, Abdelwahed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.89-98
    • /
    • 2019
  • In this work, the thermal buckling characteristics of zigzag single-walled boron nitride (SWBNNT) embedded in a one-parameter elastic medium modeled as Winkler-type foundation are investigated using a nonlocal first-order shear deformation theory (NFSDT). This model can take into account the small scale effect as well as the transverse shear deformation effects of nanotubes. A closed-form solution for nondimensional critical buckling temperature is obtained in this investigation. Further the effect of nonlocal parameter, Winkler elastic foundation modulus, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia on the critical buckling temperature are being investigated and discussed. The results presented in this paper can provide useful guidance for the study and design of the next generation of nanodevices that make use of the thermal buckling properties of boron nitride nanotubes.

Computer modeling to forecast accurate of efficiency parameters of different size of graphene platelet, carbon, and boron nitride nanotubes: A molecular dynamics simulation

  • Farazin, Ashkan;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.27 no.2
    • /
    • pp.111-130
    • /
    • 2021
  • In the present work, an extensive study for predicting efficiency parameters (��i) of various simulated nanocomposites including Polymethyl methacrylate (PMMA) as matrix and different structures including various sizes of graphene platelets (GPLs), single, double, and multi-walled carbon nanotubes (SWCNTs-DWCNTs-MWCNTs), and single and double-walled boron nitride nanotubes (SWBNNTs-DWBNNTs) are investigated. It should be stated that GPLs, carbon and boron nitride nanotubes (CNTs, BNNT) with different chiralities (5, 0), (5, 5), (10, 0), and (10, 10) as reinforcements are considered. In this research, molecular dynamics (MDs) method with Materials studio software is applied to examine the mechanical properties (Young's modulus) of simulated nanocomposite boxes and calculate η1 of each nanocomposite boxes. Then, it is noteworthy that by changing length (6.252, 10.584, and 21.173 nm) and width (7.137, 10.515, and 19.936) of GPLs, ��1, ��2, and ��3 approximately becomes (0.101, 0.114, and 0.124), (1.15, 1.22, and 1.26), (1.04, 1.05, and 1.07) respectively. After that efficiency parameters of SWCNTs, DWCNTs, and MWCNTs are calculated and discussed separately. Finally efficiency parameters of SWBNNTs and DWBNNTs with different chiralities by PMMA as matrix are determined by MD and discussed separately. It is known that the accurate efficiency parameters helps a lot to calculate the properties of nanocomposite analytically. In particular, the obtained results from this research can be used for analytical work based on the extended rule of mixture (ERM) in bending, buckling and vibration analysis of structure in future study.

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube

  • Moradi, Ali Varasteh;Peyghan, Ali Ahmadi;Hashemian, Saeede;Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3285-3292
    • /
    • 2012
  • The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.

An In-silico Simulation Study on Size-dependent Electroelastic Properties of Hexagonal Boron Nitride Nanotubes (인실리코 해석을 통한 단일벽 질화붕소 나노튜브의 크기 변화에 따른 압전탄성 거동 예측연구)

  • Jaewon Lee;Seunghwa Yang
    • Composites Research
    • /
    • v.37 no.2
    • /
    • pp.132-138
    • /
    • 2024
  • In this study, a molecular dynamics simulation study was performed to investigate the size-dependent electroelastic properties of single-walled boron nitride nanotubes(BNNT). To describe the elasticity and polarization of BNNT under mechanical loading, the Tersoff potential model and rigid ion approximation were adopted. For the prediction of piezoelectric constants and Young's modulus of BNNTs, piezoelectric constitutive equations based on the Maxwell's equation were used to calculate the strain-electric displacement and strain-stress relationships. It was found that the piezoelectric constants of BNNTs gradually decreases as the radius of the tubes increases showing a nonnegligible size effect. On the other hand, the elastic constants of the BNNTs showed opposites trends according to the equivalent geometrical assumption of the tubular structures. To establish the structure-property relationships, localized configurational change of the primarily bonded B-N bonded topology was investigated in detail to elucidate the BNNT curvature dependent elasticity.

Electron Emission Properties of Hetero-Junction Structured Carbon Nanotube Microtips Coated With BN And CN Thin Films (탄소 나노튜브 위에 붕소 및 탄소 질화 박막이 코팅된 이종접합 구조 미세팁의 전자방출 특성)

  • Noh, Young-Rok;Kim, Jong-Pil;Park, Jin-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.743-748
    • /
    • 2010
  • Boron nitride (BN) and carbon nitride (CN) films, which have relatively low work functions and commonly exhibit negative electron affinity behaviors, were coated on carbon nanotubes (CNTs) by magnetron sputtering. The CNTs were directly grown on metal-tip (tungsten, approximately 500nm in diameter at the summit part) substrates by inductively coupled plasma-chemical vapor deposition (ICP-CVD). The variations in the morphology and microstructure of CNTs due to coating of the BN and CN films were analyzed by field-emission scanning electron microscopy (FE-SEM). The energy dispersive x-ray (EDX) spectroscopy and Raman spectroscopy were used to identify the existence of the coated layers (CN and BN) on CNTs. The electron-emission properties of the BN-coated and CN-coated CNT-emitters were characterized using a high-vacuum field emission measurement system, in terms of their maximum emission currents ($I_{max}$) at 1kV and turn-on voltage ($V_{on}$) for approaching $1{\mu}A$. The results showed that the $I_{max}$ current was significantly increased and the $V_{on}$ voltage were remarkably reduced by the coating of CN or BN films. The measured values of $I_{max}-V_{on}$ were as follows; $176{\mu}A$-500V for the 5nm CN-coated emitter and $289{\mu}A$-540V for the 2nm BN-coated emitter, respectively, while the $I_{max}-V_{on}$ of the as-grown (i.e., uncoated) emitter was $134{\mu}A$-620V. In addition, the CNT emitters coated with thin CN or BN films also showed much better long-term (up to 25h) stability behaviors in electron emission, as compared with the conventional CNT emitter.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.