• 제목/요약/키워드: Boron carbide doping

검색결과 5건 처리시간 0.018초

$^{11}B$ Quadrupole Interaction Studies of Boron-doped Graphite Electrode for Lithium Secondary Battery

  • Lee, Youngil;Han, Duk-Young;Lee, Donghoon;Woo, Ae-Ja;Lee, Sam-Hyeon;Kim, Kyung-Han;Lee, Man-Ho
    • 한국자기공명학회논문지
    • /
    • 제3권2호
    • /
    • pp.90-99
    • /
    • 1999
  • Doping of boron atoms in graphite has been well known method to increase the discharge capacity as the negative electrode material for lithium secondary battery. Herein, the boron-doped graphites are prepared by mixing 1, 2.5, 5, and 7 wt. % of boron carbide in carbon during the graphitizing process. The structural states of boron in boron-doped graphites are investigated by solid-state 11B NMR spectroscopy. The resonance lines for substitutional boron atoms are identified as the second order quadrupolar powder pattern with the quardrupole coupling constant, QCC = 3.36(2) MHz. The quantitative analysis of 11B NMR spectra with boron-doped graphite has also been performed via simulation.

  • PDF

화학기상반응으로 흑연 위에 만든 SiC 반응층의 모양에 미치는 보론 카바이드의 영향 (Effect of Boron Carbide on the Morphology of SiC Conversion Layer of Graphite Substrate formed by Chemical Vapor Reaction)

  • 홍현정;류도형;조광연;공은배;신동근;신대규;이재성
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.445-450
    • /
    • 2007
  • A conversion layer of SiC was fabricated on the graphite substrate by a chemical vapor reaction method in order to enhance the oxidation resistance of graphite. The effect of boron carbide containing powder bed on the morphology of SiC conversion layer was investigated during the chemical vapor reaction of graphite with the reactive silicon-source at $1650^{\circ}C\;and\;1700^{\circ}C$ for 1 h. The presence of boron species enhanced the conversion of graphite into SiC, and altered the morphology of the conversion layer significantly as well. A continuous and thick SiC conversion layer was formed only when the boron source was used with the other silicon compounds. The boron is deemed to increase the diffusion of SiOx in SiC/C system.

플라즈마 화학증착법으로 제조된 수소화된 비정질 탄화실리콘 박막의 물성에 대한 붕소의 도핑효과 (Effect of boron doping on the chemical and physical properties of hydrogenated amorphous silicon carbide thin films prepared by PECVD)

  • 김현철;이재신
    • 한국진공학회지
    • /
    • 제10권1호
    • /
    • pp.104-111
    • /
    • 2001
  • $SiH_4$, $CH_4$, $B_2H_6$ 혼합기체를 이용하여 플라즈마 화학증착법으로 비정질 탄화실리콘(a-SiC:H) 박막을 증착하였다. 기상 doping 농도를 0에서 $2.5\times10^{-2}$ 범위에서 변화시켜 얻은 박막의 물성을 SEM, XRD, Raman 분광법, FTIR, SIMS, 광흡수도와 전기전도도 분석을 통하여 살펴보았다. $B_2H_6$/($CH_4+SiH_4$) 기체유량비가 증가할수록 붕소의 도핑효율와 미세결정성은 감소하였다. 증착 중 $B_2H_6$ 기체가 첨가됨에 따라 비정질 탄화실리콘 박막의 Si-C-H 결합기의 강도는 감소하였으며, 이의 영향으로 박막내의 수소함량은 $B_2H_6/(SiH_4+CH_4$) 기체 유량비가 증가함에 따라 16.5%에서 7.5%로 단조감소하였다. $B_2H_6(CH_4+SiH_4$) 기체유량비가 증가할수록 a-SiC:H 박막의 광학적 밴드갭과 전기활성화 에너지는 감소하였고, 전기전도도는 증가하였다.

  • PDF

절삭 공구용 다이아몬드 복합체의 저온 저압 소결 합성 및 후속 도전형 박막 공정 특성 연구 (A Study on the Sintering of Diamond Composite at Low Temperature Under Low Pressure and its Subsequent Conductive PVD Process for a Cutting Tool)

  • 조민영;반갑수
    • 한국산업융합학회 논문집
    • /
    • 제23권1호
    • /
    • pp.25-32
    • /
    • 2020
  • Generally, high-temperature, high-pressure, high-priced sintering equipment is used for diamond sintering, and conductivity is a problem for improving the surface modification of the sintered body. In this study, to improve the efficiency of diamond sintering, we identified a new process and material that can be sintered at low temperature, and attempted to develop a composite thin film that can be discharged by doping boron gas to improve the surface modification of the sintered body. Sintered bodies were sintered by mixing Si and two diamonds in different particle sizes based on CIP molding and HIP molding. In CVD deposition, CVD was performed using WC-Co cemented carbide using CH4 and H2 gas, and the specimen was made conductive using boron gas. According to the experimental results of the sintered body, as the Si content is increased, the Vickers hardness decreases drastically, and the values of tensile strength, Young's modulus and fracture toughness greatly increase. Conductive CVD deposited diamond was boron deposited and discharged. As the amount of boron added increased, the strength of diamond peaks decreased and crystallinity improved. In addition, considering the release processability, tool life and adhesion of the deposition surface according to the amount of boron added, the appropriate amount of boron can be confirmed. Therefore, by solving the method of low temperature sintering and conductivity problem, the possibility of solving the existing sintering and deposition problem is presented.