• Title/Summary/Keyword: Borel measure

Search Result 48, Processing Time 0.023 seconds

EVALUATION OF SOME CONDITIONAL ABSTRACT WIENER INTEGRALS

  • Chung, Dong-Myung;Kang, Soon-Ja
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.151-158
    • /
    • 1989
  • Let (H, B, .nu.) be an abstract Wiener space where H is a separable Hilbert space with the inner product <.,.> and the norm vertical bar . vertical bar=.root.<.,.>, which is densely and continuously imbedded into a separable Banach space B with the norm ∥.∥ , and .nu. is a probability measure on the Borel .sigma.-algebra B(B) of B which satisfies (Fig.) where $B^{*}$ is the topological dual of B and (.,.) is the natural dual pairing between B and $B^{*}$. We will regard $B^{*}$.contnd.H.contnd.B in the natural way. Thus we have =(y, x) for all y in $B^{*}$ and x in H. Let $R^{n}$ and C denote the n-dimensional Euclidean space and the complex numbers respectively.ctively.

  • PDF

WEKGHTED WEAK TYPE ESTIMATES FOR CERTAIN MAXIMAL OPERATORS IN SPACES OF HOMOGENEOUS TYPE

  • Yoo, Yoon-Jae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.25-31
    • /
    • 1999
  • Let $\nu$ be a positive Borel measure on a space of homogeneous type (X, d, $\mu$), satisfying the doubling property. A condition on a weight $\omega$ for whixh a maximal operator $M\nu f$(x) defined by M$mu$f(x)=supr>0{{{{ { 1} over {ν(B(x,r)) } INT _{ B(x,r)} │f(y)│d mu (y)}}}}, is of weak type (p,p) with respect to (ν, $omega$), is that there exists a constant C such that C $omega$(y) for a.e. y$\in$B(x, r) if p=1, and {{{{( { 1} over { upsilon (B(x,r) } INT _{ B(x,r)}omega(y) ^ (-1/p-1) d mu (y))^(p-1)}}}} C, if 1$infty$.

  • PDF

P-EXTREMAL FUNCTIONS AND BERNSTEIN-MARKOV PROPERTIES ASSOCIATED TO COMPACT SETS IN ℝd

  • Anh, Hoang Thieu;Chi, Kieu Phuong;Dieu, Nguyen Quang;Long, Tang Van
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.4
    • /
    • pp.811-825
    • /
    • 2022
  • Given a compact subset P ⊂ (ℝ+)d and a compact set K in ℂd. We concern with the Bernstein-Markov properties of the triple (P, K, 𝜇) where 𝜇 is a finite positive Borel measure with compact support K. Our approach uses (global) P-extremal functions which is inspired by the classical case (when P = Σ the unit simplex) in [7].

UNIFORM DISTRIBUTIONS ON CURVES AND QUANTIZATION

  • Joseph Rosenblatt;Mrinal Kanti Roychowdhury
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.431-450
    • /
    • 2023
  • The basic goal of quantization for probability distribution is to reduce the number of values, which is typically uncountable, describing a probability distribution to some finite set and thus to make an approximation of a continuous probability distribution by a discrete distribution. It has broad application in signal processing and data compression. In this paper, first we define the uniform distributions on different curves such as a line segment, a circle, and the boundary of an equilateral triangle. Then, we give the exact formulas to determine the optimal sets of n-means and the nth quantization errors for different values of n with respect to the uniform distributions defined on the curves. In each case, we further calculate the quantization dimension and show that it is equal to the dimension of the object; and the quantization coefficient exists as a finite positive number. This supports the well-known result of Bucklew and Wise [2], which says that for a Borel probability measure P with non-vanishing absolutely continuous part the quantization coefficient exists as a finite positive number.

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.

A BANACH ALGEBRA AND ITS EQUIVALENT SPACES OVER PATHS WITH A POSITIVE MEASURE

  • Cho, Dong Hyun
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.809-823
    • /
    • 2020
  • Let C[0, T] denote the space of continuous, real-valued functions on the interval [0, T] and let C0[0, T] be the space of functions x in C[0, T] with x(0) = 0. In this paper, we introduce a Banach algebra ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ on C[0, T] and its equivalent space ${\bar{\mathcal{F}}}({\mathcal{H}}) $, a space of transforms of equivalence classes of measures, which generalizes Fresnel class 𝓕(𝓗), where 𝓗 is an appropriate real separable Hilbert space of functions on [0, T]. We also investigate their properties and derive an isomorphism between ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ and ${\bar{\mathcal{F}}}({\mathcal{H}}) $. When C[0, T] is replaced by C0[0, T], ${\bar{\mathcal{F}}}({\mathcal{H}}) $ and ${\bar{\mathcal{S}}}_{{\alpha},{\beta};{\varphi}}$ reduce to 𝓕(𝓗) and Cameron-Storvick's Banach algebra 𝓢, respectively, which is the space of generalized Fourier-Stieltjes transforms of the complex-valued, finite Borel measures on L2[0, T].

CONDITIONAL INTEGRAL TRANSFORMS AND CONVOLUTIONS OF BOUNDED FUNCTIONS ON AN ANALOGUE OF WIENER SPACE

  • Cho, Dong Hyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.323-342
    • /
    • 2013
  • Let $C[0,t]$ denote the function space of all real-valued continuous paths on $[0,t]$. Define $Xn:C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}:C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\cdots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\cdots},x(t_n),x(t_{n+1}))$, where $0=t_0$ < $t_1$ < ${\cdots}$ < $t_n$ < $t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions which have the form $${\int}_{L_2[0,t]}{{\exp}\{i(v,x)\}d{\sigma}(v)}{{\int}_{\mathbb{R}^r}}\;{\exp}\{i{\sum_{j=1}^{r}z_j(v_j,x)\}dp(z_1,{\cdots},z_r)$$ for $x{\in}C[0,t]$, where $\{v_1,{\cdots},v_r\}$ is an orthonormal subset of $L_2[0,t]$ and ${\sigma}$ and ${\rho}$ are the complex Borel measures of bounded variations on $L_2[0,t]$ and $\mathbb{R}^r$, respectively. We then investigate the inverse transforms of the function with their relationships and finally prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions, can be expressed in terms of the products of the conditional Fourier-Feynman transforms of each function.

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE

  • Cho, Dong Hyun
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1105-1127
    • /
    • 2013
  • Let C[0, $t$] denote the function space of real-valued continuous paths on [0, $t$]. Define $X_n\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\ldots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\ldots},x(t_n),x(t_{n+1}))$, respectively, where $0=t_0 <; t_1 <{\ldots} < t_n < t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions, which have the form $fr((v_1,x),{\ldots},(v_r,x)){\int}_{L_2}_{[0,t]}\exp\{i(v,x)\}d{\sigma}(v)$ for $x{\in}C[0,t]$, where $\{v_1,{\ldots},v_r\}$ is an orthonormal subset of $L_2[0,t]$, $f_r{\in}L_p(\mathbb{R}^r)$, and ${\sigma}$ is the complex Borel measure of bounded variation on $L_2[0,t]$. We then investigate the inverse conditional Fourier-Feynman transforms of the function and prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions can be expressed by the products of the analytic conditional Fourier-Feynman transform of each function.