• Title/Summary/Keyword: Borehole data

Search Result 286, Processing Time 0.03 seconds

An Analysis on Response Characteristics of a Dual Neutron Logging using Monte Carlo Simulation (Monte Carlo 모델링을 이용한 이중 중성자검층 반응 특성 분석)

  • Won, Byeongho;Hwang, Seho;Shin, Jehyun
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.429-438
    • /
    • 2017
  • Monte Carlo N-Particle (MCNP) modeling algorithm based on the Monte Carlo method was used to perform the simulation of neutron logging in order to increase the reliability and utilization of neutron logs applied in geological and resource engineering fields. To perform the simulation using MCNP, we used a realistic three-dimensional configuration of neutron sonde and formation. Validation of the modeling was confirmed by comparing the calibration curves of sonde manufacture with those calculated by MCNP modeling. After the validation, lithology effects, pore fluid effects, borehole diameter change, casing effect, and effects of borehole water level were investigated through modeling experiments. Numerical tests indicate that changes in neutron count ratio according to the lithology were quantitatively understood. In case of a borehole with a diameter of 3 inches, ratio of counting rates was higher than expected to be interpreted as borehole fluid has small effects on neutron logging. Effect of casing was also small in general, particular when porosity increases. Since modeling results above the groundwater level showed a tendency opposite to those below the groundwater level, neutron logs can be used to detect groundwater level. The modeling results simulated in this study for various borehole environments are expected to be used for data processing and interpretation of neutron log.

Preliminary Analyses of the Deep Geoenvironmental Characteristics for the Deep Borehole Disposal of High-level Radioactive Waste in Korea (고준위 방사성폐기물 심부시추공 처분을 위한 국내 심부지질 환경특성 예비분석)

  • LEE, Jongyoul;LEE, Minsoo;CHOI, Heuijoo;KIM, Geonyoung;KIM, Kyungsu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.179-188
    • /
    • 2016
  • Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested.

Automatic Determination of the Azimuth Angle of Reflectors in Borehole Radar Reflection Data Using Direction-finding Antenna (방향탐지 안테나를 이용한 시추공 레이다 반사법 탐사에 있어서 반사층 방위각의 자동 결정)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.176-182
    • /
    • 1998
  • The borehole radar reflection survey can image the underground structure with high resolution, however, we cannot get any information on the orientation of the reflectors with dipole antenna alone. The direction-finding antenna system is commonly used to give the solution to the problem. However, the interpretation of the data from direction- finding antenna may be time-consuming, and sometimes have ambiguities in the sense of precise determination of the azimuth. To solve the problem, we developed the automatic azimuth finding scheme of reflectors in borehole radar reflection data using direction-finding antenna. The algorithm is based on finding the azimuthal angle possibly showing the maximum reflection amplitude in the least-squared error sense. The developed algorithm was applied to the field data acquired in quarry mine. It was possible to locate nearly all of the reflectors in three dimensional fashion, which coincide with the known geological structures and man-made discontinuities.

  • PDF

Analysis of Scale and Shape of Limestone Cavities using Borehole Drilling and Geophysical Investigations (시추 및 물리탐사를 이용한 석회암 공동의 분포 규모 분석)

  • Song, Gyu-Jin;Yun, Hyun-Seok;Jang, Il-Ho;Choi, Yong-Seok;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.251-263
    • /
    • 2015
  • Geological mapping, borehole drilling, electrical resistivity, and seismic tomography surveys were conducted in order to map underground cavities and better understand the mechanisms driving subsidence in a limestone region in Korea. Limestone outcrops in the study area generally alternate between calcite-rich and calcite-poor rock. The results reveal that in areas experiencing subsidence, cavities occur mainly around soil-rock boundaries at depths of 7~14 m. These results are based on comparative analyses of electrical resistivity, seismic tomography, and borehole logging data. The volumes of the cavities are relatively small in a range of 558~835 ㎥ and they have a shape typical of suffosion sinkholes, which are typically found where sandy soils overlie bedrock cavities.

A Case Study on a Large Scale Borehole Test Blasting to Generate Man-made Earthquake (인공지진 발생을 위한 대규모 시추공 시험발파 사례연구)

  • Jeong, Ju-Hwan;Choi, Byung-Hee;Ryu, Chang-Ha;Min, Hyung-Dong;Choi, Hyung-Bin
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.48-55
    • /
    • 2009
  • In the process of identifying the earth's crust structures to accurately locate the seismic epicenter, man-made earthquakes need to be generated. Such a large-scale ground vibration can be generated by a deep borehole blasting, but it can also accompany some environmental impacts on the surroundings. In this respect, a borehole test blasting was carried out to determine the maximum charge weight that could be used without affecting the various structures around the blast site. Total 400kg of gelatine-type dynamites was used in the test blast. As a result, a prediction equation for ground vibrations was derived from the measured data. With the allowable level of 3.0 mm/s for residential structures, the maximum charge weight was determined to be 677kg if military structures near the site were considered. But if the military structures were not considered, it was found that up to 2100kg of explosives could be used without affecting old houses in the nearby village.

Borehole radar survey to explore limestone cavities for the construction of a highway bridge

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • During excavation work for the construction of a highway bridge in a limestone area in Korea, several cavities were found, and construction work was stopped temporarily. Cavities under the bridge piers might seriously threaten the safety of the planned bridge, because they could lead to excessive subsidence and differential settlement of the pier foundations. In order to establish a method for reinforcement of the pier foundations, borehole radar reflection and tomography surveys were carried out, to locate cavities under the planned pier locations and to determine their sizes where they exist. Since travel time data from the crosshole radar survey showed anisotropy, we applied an anisotropic tomography inversion algorithm assuming heterogeneous elliptic anisotropy, in order to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. The distribution of maximum velocity matched core logging results better than that of the minimum velocity. The degree of anisotropy, defined by the normalized difference between maximum and minimum velocities, was helpful in deciding whether an anomalous zone in a tomogram was a cavity or not. By careful examination of borehole radar reflection and tomography images, the spatial distributions of cavities were delineated, and most of them were interpreted as being filled with clay and/or water. All the interpretation results implied that two faults imaged clearly by a DC resistivity survey were among the most important factors controlling the groundwater movement in the survey area, and therefore were closely related to the development of cavities. The method of reinforcement of the pier foundations was based on the interpretation results, and the results were confirmed when construction work was resumed.

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

A study of the Sampling Bias Correction on Joint Data from 1D Survey Line (1D 측선에 의한 절리 자료에 대한 편향 보정 기법에 관한 연구)

  • 엄정기
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.344-352
    • /
    • 2003
  • The procedures to correct sampling biases for discontinuity data obtained from 1D survey line(borehole or scanline) is addressed. The Probability of intersection between the survey line and a circular discontinuity is considered, and a correction far orientation bias is developed assuming discontinuities as equivalent circular disks. The correction incorporates the effect of the angle between the direction of survey line and each discontinuity plane belonging to the discontinuity cluster, size of each discontinuity and length of the survey line. A procedure is provided to estimate unbiased discontinuity spacing parameters using the discontinuity spacing data based on the measurements carried out on a finite length of the survey line.

Rock Quality using Seismic Tomography in Deep Tunnel Depths (대심도 탄성파 토모그래피 탐사를 이용한 암반분류)

  • Koo, Ja-Kab;Kim, Young-Duck;Kwon, So-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.5-13
    • /
    • 2002
  • In tunnel design, geotechnical survey of over 200m tunnel depth is required because of its characteristical topography. For this reason, there are difficulties in collecting information of basic data in tunnel design because of large-scale costs in borehole tests, of limits to a geotechnical analysis by the existing refraction seismic survey and of analytical errors in steep mountainous area. Seismic tomography has many advantages as follows; 1) seismic velocity as absolute value is more reliable than electrical resistivity, 2) geotechnical analysis in deep tunnel depth is available by seismic velocity, 3) analytical errors is reduced in steep mountainous area. In this paper, it was found out a correlation of seismic velocity and Q in tunnel design in the neighborhood of the National Capital region and the reduction effect of tunnel construction cost using reliable rock quality by seismic tomography compared with by borehole data and electricity resistivity data.

  • PDF

Evaluation of Effective Thermal Conductivity and Thermal Resistance in Ground Heat Exchanger Boreholes (지중 열교환기 보어홀에서의 유효 열전도도 및 열저항 산정)

  • Sohn Byong Hu;Shin Hyun-Joon;Park Seong-Koo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.695-703
    • /
    • 2005
  • The objective of this study is to determine the effective thermal conductivity and thermal resistance values in test boreholes with three different fill materials. To evaluate these heat transfer properties, in-situ tests on four vertical boreholes were conducted by adding a monitored amount of heat to water over various test lengths. Two parameter estimation models, line-source and numerical one-dimensional models, for evaluation of thermal response test data were compared when applied on the same four data sets. Results show that the average thermal conductivity deviation between measured data and these two models is in the range of $3.03\%$ to $4.45\%$. The effect of increasing grout thermal conductivity from 1.34 to 1.82 $W/m^{\circ}C$ resulted in overall increases in effective formation thermal conductivity by $11.1\%$ to $51.9\%$ and reductions in borehole thermal resistance by $11.6\%$ to $26.1\%$.