• Title/Summary/Keyword: Borehole System

Search Result 249, Processing Time 0.023 seconds

Evaluation of Ground Effective Thermal Properties and Effect of Borehole Thermal Resistance on Performance of Ground Heat Exchanger (지중 유효 열물성 산정 및 지중열교환기 성능에 대한 보어홀 열저항의 영향)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.32-40
    • /
    • 2012
  • Geothermal heat pump(GHP) systems use vertical borehole heat exchangers to transfer heat to and from the surrounding ground via a heat carrier fluid that circulates between the borehole and the heat pump. An Important feature associated with design parameters and system performance is the local thermal resistances between the heat carrier flow channels in the borehole and the surrounding ground. This paper deals with the in-situ experimental determination of the effective thermal properties of the ground. The recorded thermal responses together with the line-source theory are used to determine the thermal conductivity and thermal diffusivity, and the steady-state borehole thermal resistance. In addition, this paper compares the experimental borehole resistance with the results from the different empirical and theoretical relations to evaluate this resistance. Further, the performance simulation of a GHP system with vertical borehole heat exchangers was conducted to analyze the effect of the borehole thermal resistance on the system performance.

A Study of the Effect of Borehole Thermal Resistance on the Borehole Length (보어홀 전열저항이 보어홀 길이에 미치는 영향에 관한 연구)

  • Lee, Se-Kyoun;Woo, Joung-Son
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.5
    • /
    • pp.20-27
    • /
    • 2009
  • The effect of borehole thermal resistance on the borehole length is studied. In performing this work a new concept BLRR(borehole length reduction rate) is developed based on the line source model. The solution of line source model is shown to be valid through the comparison with the data of thermal response test. It is shown that BLRR is a function of soil thermal conductivity(k) and borehole thermal resistance($R_b$). The value of BLRR increases with increasing k, which means reducing $R_b$ is more effective when k is high. The reduction of borehole length with change of $R_b$ is easily estimated with BLRR. The validity of BLRR is also examined with EED analysis.

Fiber optic distribution temperature sensing in a borehole heat exchanger system (광섬유 센서를 이용한 지중 열교환기 시스템 온도 모니터링)

  • Shim, Byoung-Ohan;Lee, Young-Min;Kim, Hyoung-Chan;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.451-454
    • /
    • 2006
  • Fiber optic distributed temperature sensing and thermal line sensor are applied in an observation borehole and a loom deep borehole heat exchanger. For the case of permanently installed system fiber optic DTS is very useful. By comparing with TLS, fiber optic DTS shows good accuracy and reliability. Ground water flow can give influences at heat exchange rate of the heat pump system. According to the hydraulic characteristics and temperature-depth profile, we consider that temperature-depth profile do not seem to be dependent on ground water flow. A permanent installation of fiber optic cable is expected as a reliable temperature measurement technique in a borehole heat exchanger system.

  • PDF

Study on Analytical and Empirical Methods for Assessing Geo-Heat Transfer Characteristics (지중열전달특성 평가에 관한 해석 및 실험적 방법에 관한 연구 - 지중 열물성치 및 보어 홀 열 저항 평가 -)

  • Park Jun-n;Baek Nam-Choon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.427-432
    • /
    • 2005
  • This study treats the advantage of in situ line source method measuring the heat transfer capacity of a borehole, using mobile equipment, to determine the thermal properties of the entire borehole system such as thermal conductivity, diffusiveity. volumetric heat capacity, and borehole thermal resistance. The results from the response test include not only the thermal properties of the ground and the borehole, but also conditions that are difficult to estimate, e,g. natural convection in the boreholes, asymmetry in the construction, etc. In this study, 1) theoretical in situ methods for assessing working fluid temperature variation in V-type PE tube have been introduced, and 2) TRTE(Thermal Response Test Equipment) has been built based on these kinds of theoretical in situ methods. Basically TRTE consists of a pump, a heater and temperature sensors for measuring the inlet and outlet temperatures of the borehole. In order to make equipment easily transportable it is set up on a small trailer. Since the response test takes above two days to execute, the test was fully automatic in recording measured data using Labview DAS(Data acquisition system) program. The test was demonstrated in the course of intensive research in this field through the one site at Ulsan city in Korea. From this kind of thermal properties test of borehole systems in situ, the design of the borehole system can be optimized regarding the total geological, hydro-geological and technical conditions at the location.

  • PDF

Deep Hydrochemical Investigations Using a Borehole Drilled in Granite in Wonju, South Korea

  • Kim, Eungyeong;Cho, Su Bin;Kihm, You Hong;Hyun, Sung Pil
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.517-532
    • /
    • 2021
  • Safe geological disposal of spent nuclear fuel (SNF) requires knowledge of the deep hydrochemical characteristics of the repository site. Here, we conducted a set of deep hydrochemical investigations using a 750-m borehole drilled in a model granite system in Wonju, South Korea. A closed investigation system consisting of a double-packer, Waterra pump, flow cell, and water-quality measurement unit was used for in situ water quality measurements and subsequent groundwater sampling. We managed the drilling water labeled with a fluorescein dye using a recycling system that reuses the water discharged from the borehole. We selected the test depths based on the dye concentrations, outflow water quality parameters, borehole logging, and visual inspection of the rock cores. The groundwater pumped up to the surface flowed into the flow cell, where the in situ water quality parameters were measured, and it was then collected for further laboratory measurements. Atmospheric contact was minimized during the entire process. Before hydrochemical measurements and sample collection, pumping was performed to purge the remnant drilling water. This study on a model borehole can serve as a reference for the future development of deep hydrochemical investigation procedures and techniques for siting processes of SNF repositories.

Preliminary Evaluation of Domestic Applicability of Deep Borehole Disposal System (심부시추공 처분시스템의 국내적용 가능성 예비 평가)

  • Lee, Jongyoul;Lee, Minsoo;Choi, Heuijoo;Kim, Kyungsu;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.491-505
    • /
    • 2018
  • As an alternative to deep geological disposal technology, which is considered as a reference concept, the domestic applicability of deep borehole disposal technology for high level radioactive waste, including spent fuel, has been preliminarily evaluated. Usually, the environment of deep borehole disposal, at a depth of 3 to 5 km, has more stable geological and geo-hydrological conditions. For this purpose, the characteristics of rock distribution in the domestic area were analyzed and drilling and investigation technologies for deep boreholes with large diameter were evaluated. Based on the results of these analyses, design criteria and requirements for the deep borehole disposal system were reviewed, and preliminary reference concept for a deep borehole disposal system, including disposal container and sealing system meeting the criteria and requirements, was developed. Subsequently, various performance assessments, including thermal stability analysis of the system and simulation of the disposal process, were performed in a 3D graphic disposal environment. With these analysis results, the preliminary evaluation of the domestic applicability of the deep borehole disposal system was performed from various points of view. In summary, due to disposal depth and simplicity, the deep borehole disposal system should bring many safety and economic benefits. However, to reduce uncertainty and to obtain the assent of the regulatory authority, an in-situ demonstration of this technology should be carried out. The current results can be used as input to establish a national high-level radioactive waste management policy. In addition, they may be provided as basic information necessary for stakeholders interested in deep borehole disposal technology.

Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method (선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석)

  • Lee, Se-Kyoun;Woo, Joung-Son;Ro, Jeong-Geun
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

Borehole radar for environment study

  • Sato Motoyuki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.299-304
    • /
    • 2003
  • Borehole radar is one kind of GPR, but it can be used in deep boreholes, and it has many advantages compared with low frequency borehole EM tools, and surface GPR. We have developed various techniques on borehole radar for environment study. The hardware development includes broadband radar system with the functions of polarimetry and inteferometry. By using these systems, we tested the measurements to applications such as subsurface fracture characterization, subsurface cavity detections. In this paper, we will describe the advantages of the advanced radar technology for environment studies, and show some experiment results.

  • PDF

A Study on Performance of Seasonal Borehole Thermal Energy Storage System Using TRNSYS (TRNSYS를 이용한 Borehole 방식 태양열 계간축열 시스템의 성능에 관한 연구)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.37-47
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a glass greenhouse was analyzed numerically. For this study, the gardening 16th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And, the heating load of the glass greenhouse selected was 576 GJ. BTES (Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modeling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump, controller. As a result of the analysis, the energy of 928 GJ from the flat plate solar collector was stored into BTES system and 393 GJ of energy from BTES system was extracted during heating period, so that it was confirmed that the thermal efficiency of BTES system was 42% in 5th year. Also since the heat supplied from the auxiliary boiler was 87 GJ in 5th year, the total annual heating demand was confirmed to be mostly satisfied by the proposed system.

A Study on the Estimation of Soil Formation Thermal Conductivities and Borehole Resistances with One-Dimensional Numerical Model and In-Situ Field Tests (1차원 수치모델과 현지측정에 의한 지중열전도율 및 보어홀 전열저항 해석에 관한 연구)

  • Lee Se-Kyoun;Woo Joung-Son;Ro Jeong-Geun;Kim Dae-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.10
    • /
    • pp.783-790
    • /
    • 2006
  • A one-dimensional numerical model coupled with parameter estimation is used to predict the effective thermal conductivities of soil formations and borehole resistances from in situ field test data. In this application a new method of using initial ignoring time (IIT) obtained from error estimation is tried and turned out to be successful in determining soil thermal conductivities. This method is used for single-U and double-U borehole system. The results of this method are compared and agreed well with those of existing software (GPM) in the analysis of single-U borehole data. In the analysis of double-U borehole data this method seems to be better in predicting soil and borehole properties.