• 제목/요약/키워드: Bootstrap(BCa) method

검색결과 6건 처리시간 0.022초

Interval Estimations for Reliablility in Stress-Strength Model by Bootstrap Method

  • Lee, In-Suk;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제6권1호
    • /
    • pp.73-83
    • /
    • 1995
  • We construct the approximate bootstrap confidence intervals for reliability (R) when the distributions of strength and stress are both normal. Also we propose percentile, bias correct (BC), bias correct acceleration (BCa), and percentile-t intervals for R. We compare with the accuracy of the proposed bootstrap confidence intervals and classical confidence interval based on asymptotic normal distribution through Monte Carlo simulation. Results indicate that the confidence intervals by bootstrap method work better than classical confidence interval. In particular, confidence intervals by BC and BCa method work well for small sample and/or large value of true reliability.

  • PDF

강우빈도해석에서 Bootstrap을 이용한 확률분포의 매개변수 추정에 대한 불확실성 해석 (Uncertainty Analysis for Parameter Estimation of Probability Distribution in Rainfall Frequency Analysis Using Bootstrap)

  • 서영민;박기범
    • 한국환경과학회지
    • /
    • 제20권3호
    • /
    • pp.321-327
    • /
    • 2011
  • Bootstrap methods is the computer-based resampling method that estimates the standard errors and confidence intervals of summary statistics using the plug-in principle for assessing the accuracy or uncertainty of statistical estimates, and the BCa method among the Bootstrap methods is known much superior to other Bootstrap methods in respect of the standards of statistical validation. Therefore this study suggests the method of the representation and treatment of uncertainty in flood risk assessment and water resources planning from the construction and application of rainfall frequency analysis model considersing the uncertainty based on the nonparametric BCa method among the Bootstrap methods for the assessement of the estimation of probability rainfall and the effect of uncertainty considering the uncertainty of the parameter estimation of probability in the rainfall frequency analysis that is the most fundamental in flood risk assessement and water resources planning.

Bootstrap Analysis of ILSTS035 Microsatellite Locus in Hanwoo Chromosome 6

  • Lee, Jea-Young;Lee, Yong-Won;Kim, Mun-Jung
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.75-81
    • /
    • 2004
  • We selected, in previous research, a major DNA Marker 235bp of ILSTS035 microsatellite locus in progeny test Hanwoo chromosome 6. We apply a major DNA Marker 235bp to perormance valuation Hanwoo chomosome 6. We use bootstrap BCa method and calculate confidence interval. A major DNA Marker 235bp is verified that it does not have environmental effect but affects primely economic trait factor.

  • PDF

A Major DNA Marker of BM4311 Microsatellite Locus in Hanwoo Chromosome 6 using the Bootstrap BCa Method

  • Lee, Jea-Young;Kim, Mun-Jung;Lee, Young-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권1호
    • /
    • pp.41-47
    • /
    • 2004
  • DNA marker 95bp and 100bp are selected as major DNA markers of the BM4311 microsatellite locus in progeny test Hanwoo chromosome 6 linkage map. This document is tried to know whether DNA marker 95bp and 100bp are also major DNA markers in Hanwoo performance valuation in chromosome 6 linkage map. The bootstrap BCa method will be used to calculate confidence interval for DNA markers.

  • PDF

Comparison of Parametric and Bootstrap Method in Bioequivalence Test

  • Ahn, Byung-Jin;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권5호
    • /
    • pp.367-371
    • /
    • 2009
  • The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled data sets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

포아송 분포의 혼합모형을 이용한 기부 횟수 자료 분석 (The Analysis of the Number of Donations Based on a Mixture of Poisson Regression Model)

  • 김인영;박수범;김병수;박태규
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.1-12
    • /
    • 2006
  • 본 논문에서는 2002년에 (사)볼런티어21에서 실시한 설문조사 자료를 이용하여 2001년에 우리나라 개인들이 기부한 횟수에 영향을 주는 유의한 변수들을 식별하였다. 기부횟수의 경험적 분포로 미루어 모집단은 기부를 적게 하는 집단과 많이 하는 집단으로 구성되며 따라서 모집단 분포를 두개 포아송 분포의 혼합분포로 모형화하였다. 이 모형에 기초하여 기부횟수에 영향을 미치는 변수들을 식별하였다. EM알고리즘을 이용하여 모수를 추정하고 2.5%와 97.5%에 기초한 백분위수 신뢰구간을 보완한 BCa(bias-corrected and accelerated) 신뢰구간을 계산하여 유의한 변수들을 찾았다. 연구결과 혼합 포아송 회귀모형에서는 기부횟수가 적은 집단("작은 군")과 기부횟수가 많은 집단("큰 군") 모두에서 소득과 자원봉사의 경험 유무(1:예, 0:아니오)가 기부횟수에 유의적으로 영향을 주는 변수로 밝혀졌다. 또한 두 변수 각각에서 회귀계수가 양수로 나타나 소득이 많을수록, 혹은 자원봉사의 경험이 있는 사람일수록 기부횟수가 증가하는 것을 알 수 있다. 그러나 소득과 자원봉사 변수의 회귀계수는 "작은 군"이 "큰 군"에 비해 더욱 크게 나타나고 있다. "작은 군"보다 "큰 군"의 사람들에게 기부가 생활화되어 있고, 따라서 소득과 자원봉사의 경험 유무가 기부횟수에 미치는 영향이 상대적으로 적은 것으로 파악된다.