• Title/Summary/Keyword: Boost inductance

Search Result 56, Processing Time 0.023 seconds

Implementation of Current Mode Control using Current Balance Controller of Multi-Phase Interleaved Boost Converter (다상 교호 승압컨버터의 전류평형제어기를 이용한 전류모드제어기 구현)

  • Park, Jong-Gyu;Choi, Hyun-Chil;Shin, Hwi-Beom
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.157-163
    • /
    • 2008
  • In the multi-phase interleaved converter with peak current mode control, current imbalance is measured when inductors of converter module are not exactly identical. In this paper current-sharing controller is proposed to balance phase current of converter modules. It also is designed to have good transient response. Proposed method implemented the 2-phase and 4-phase interleaved boost converter with imbalanced inductance. Experimental results verify the performance of Current share during the transient state of converter.

An Active Clamp High Step-Up Boost Converter with a Coupled Inductor

  • Luo, Quanming;Zhang, Yang;Sun, Pengju;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • An active clamp high step-up boost converter with a coupled inductor is proposed in this paper. In the proposed strategy, a coupled inductor is adopted to achieve a high voltage gain. The clamp circuit is included to achieve the zero-voltage-switching (ZVS) condition for both the main and clamp switches. A rectifier composed of a capacitor and a diode is added to reduce the voltage stress of the output rectifier diode. As a result, diodes with a low reverse-recovery time and forward voltage-drop can be utilized. Since the voltage stresses of the main and clamp switches are far below the output voltage, low-voltage-rated MOSFETs can be adopted to reduce conduction losses. Moreover, the reverse-recovery losses of the diodes are reduced due to the inherent leakage inductance of the coupled inductor. Therefore, high efficiency can be expected. Firstly, the derivation of the proposed converter is given and the operation analysis is described. Then, a steady-state performance analysis of the proposed converter is analyzed in detail. Finally, a 250 W prototype is built to verify the analysis. The measured maximum efficiency of the prototype is 95%.

Development Of High Efficiency Boost DC/DC Converter For EV (전기자동차용 고효율 승압형 DC/DC 컨버터 개발)

  • Choi, Mi-Seon;Song, Sung-Geun;Park, Sung-Jun;Kim, Dae-Kyong;Kim, Yong-Gu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2010
  • In the paper, reactorless high efficiency boost DC/DC converter for EV is proposed. In proposed converter, improves efficiency because decrease power loss when the switches are turned on/off using zero current switching (ZCS) at all switch of primary full bridge. By replacing reactance ingredients of L-C resonance circuit for ZCS with leakage inductance ingredients of high frequency transformer, it reduces system size and expense because of not add special reactor. For validity verification of proposed converter, in the paper implements simulation using PSIM and perform experiment by making 5KW DC/DC converter. In experimental results, efficiency of proposed converter conformed superiority.

Pulse-width Adjustment Strategy for Improving the Dynamic Inductor Current Response Performance of a Novel Bidirectional DC-DC Boost Converter

  • Li, Mingyue;Yan, Peimin
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.34-44
    • /
    • 2018
  • This paper presents a pulse-width adjustment (PWA) strategy for a novel bidirectional DC-DC boost converter to improve the performance of the dynamic inductor current response. This novel converter consists of three main components: a full-bridge converter (FBC), a high-frequency isolated transformer with large leakage inductance, and a three-level voltage-doubler rectifier (VDR). A number of scholars have analyzed the principles, such as the soft-switching performance and high-efficiency characteristic, of this converter based on pulse-width modulation plus phase-shift (PPS) control. It turns out that this converter is suitable for energy storage applications and exhibits good performance. However, the dynamic inductor current response processes of control variable adjustment is not analyzed in this converter. In fact, dc component may occur in the inductor current during its dynamic response process, which can influence the stability and reliability of the converter system. The dynamic responses under different operating modes of a conventional feedforward control are discussed in this paper. And a PWA strategy is proposed to enhance the dynamic inductor current response performance of the converter. This paper gives a detailed design and implementation of the PWA strategy. The proposed strategy is verified through a series of simulation and experimental results.

A study on the haromnic attenuation of the BF Converter (BF 컨버터의 고조파 감쇠에 관한 연구)

  • 최태섭;안인수;임승하;사공석진
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.4
    • /
    • pp.8-15
    • /
    • 2000
  • In this paper, we realize the active PFC(Power Factor Correction) system of BF(Boost Forward) converter with PWM-PFM(Pulse Width Modulation-Pulse Frequency Modulation) control technique to control DC output voltage, to remove the noise like harmonics at output voltage, and to control the input current with sinusoidal wave synchronized by the source voltage.To achieve the desired load voltage and improved PFC, we first implement current shaping control at the inverting stage and make the converted output DC voltage with forward converter. After making the ratio of output voltage to current as 50V/1A and the duty ratio greater than 0.5. When input voltage is 30V and boost inductance is 1.1mH. we control the voltage changing rate according to the variation of load resistance using a PWM-PFM control technique. And finally we prove experimentally, we attenuated its harmonics and improved PF up to 0.96 using the current shaping technique.

  • PDF

High Performance Current-Mode DC-DC Boost Converter in BiCMOS Integrated Circuits

  • Lee, Chan-Soo;Kim, Eui-Jin;Gendensuren, Munkhsuld;Kim, Nam-Soo;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.262-266
    • /
    • 2011
  • A simulation study of a current-mode direct current (DC)-DC boost converter is presented in this paper. This converter, with a fully-integrated power module, is implemented by using bipolar complementary metal-oxide semiconductor (BiCMOS) technology. The current-sensing circuit has an op-amp to achieve high accuracy. With the sense metal-oxide semiconductor field-effect transistor (MOSFET) in the current sensor, the sensed inductor current with the internal ramp signal can be used for feedback control. In addition, BiCMOS technology is applied to the converter, for accurate current sensing and low power consumption. The DC-DC converter is designed with a standard 0.35 ${\mu}m$ BiCMOS process. The off-chip inductor-capacitor (LC) filter is operated with an inductance of 1 mH and a capacitance of 12.5 nF. Simulation results show the high performance of the current-sensing circuit and the validity of the BiCMOS converter. The output voltage is found to be 4.1 V with a ripple ratio of 1.5% at the duty ratio of 0.3. The sensing current is measured to be within 1 mA and follows to fit the order of the aspect ratio, between sensing and power FET.

Influence on the PFC circuit with characteristics variation of MPP core (금속분말 코어의 특성변화가 PFC 회로에 미치는 영향)

  • Ju J.K.;Ahn T.Y.;Jang P.W;Jeong I.B.;Choi G.B.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.434-438
    • /
    • 2003
  • This paper present an investigation of the influence on the PFC(power factor correction) circuit with characteristics variation of MPP (Molybdenum permalloy powder) core. The experiment results of the 1.5kW class Boost converter for PFC rectifier with the average current mode control are evaluated to verify the influence on the PFC converter with inductance variation of the MPP core. As a results, it is shown that the ripple of the inductor using a MPP core increase with output power of the converter.

  • PDF

A study on the micro inductor using LTCC technology (LTCC기술을 이용한 마이크로 인덕터에 관한 연구)

  • Choi, Dong-Chan;Kim, Chan-Young;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.289-291
    • /
    • 2003
  • This paper deals with the design of a spiral micro inductor using LTCC(Low Temperature Cofired Ceramics) technology. The inductors using the LTCC technology have some prominent properties of high integration of circuits, high confidence and low cost comparing with previously fabricated thick-film inductors. In this paper, we designed a new spiral-type micro inductor comprising a magnetic material to improve the inductance and leakage flux. we, in addition, presented the simulation results for various shapes of the magnetic material in the micro inductor, Finally application of the micro inductor to the boost DC-DC converter is investigated.

  • PDF

High Step-Up Converter with Hybrid Structure Based on One Switch

  • Hwu, K.I.;Peng, T.J.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1566-1577
    • /
    • 2015
  • A novel high step-up converter is presented herein, which combines the conventional buck-boost converter, the charge pump capacitor and the coupling inductor. By doing so, a quite high voltage conversion ratio due to not only the turns ratio but also the duty cycle, so as to increase design feasibility. It is noted that the denominator of the voltage conversion ratio is the square of one minus duty cycle. Above all, there is no voltage spike across the switch due to the leakage inductance and hence no passive or active snubber is needed, and furthermore, the used switch is driven without isolation and hence the gate driving circuit is relatively simple, thereby upgrading the industrial application capability of this converter. In this paper, the basic operating principles and the associated mathematical deductions are firstly described in detail, and finally some experimental results are provided to demonstrate the effectiveness of the proposed high step-up converter.

A Study on the Controllable Snubber for Switching Loss Reduction in Interleaved Fly-Back Converter (인터리브드 플라이 백 컨버터의 스위칭 손실 감소를 위한 제어형 스너버에 관한 연구)

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.57-64
    • /
    • 2015
  • This paper proposes a new switching algorithm for an controllable clamp snubber to improve the efficiency of a fly-back converter system. This system uses an controllable clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Experimental results are presented to show the validity of the proposed controllable clamp control algorithm.