• 제목/요약/키워드: Boost converter: Power factor correction

검색결과 187건 처리시간 0.029초

부스트 방식 역률개선회로의 설계와 특성분석 (Analysis of continuous conduction mode boost power-factor-correction circuit)

  • 김철진;장준영;김상덕;송요창;윤신용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1120-1122
    • /
    • 2002
  • Switching power supply are widely used in many industrial field. Power factor improvement and harmonic reduction technique is very important in switching power supply. The power factor correction (PFC) circuit using boost converter used in input of power source is studied in this paper. It is analyzed distortional situations and harmonics of input currents that presented at continuous conduction mode(CCM) of boost PFC circuit. It is done simulations of harmonics distribution according to load variation by using PSPICE and MATLAB. From the actual experiment of boost PFC circuit the validity of the analysis is confirmed.

  • PDF

Analysis, Design and Implementation of an Interleaved Single-Stage AC/DC ZVS Converters

  • Lin, Bor-Ren;Huang, Shih-Chuan
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.258-267
    • /
    • 2012
  • An interleaved single-stage AC/DC converter with a boost converter and an asymmetrical half-bridge topology is presented to achieve power factor correction, zero voltage switching (ZVS) and load voltage regulation. Asymmetric pulse-width modulation (PWM) is adopted to achieve ZVS turn-on for all of the switches and to increase circuit efficiency. Two ZVS half-bridge converters with interleaved PWM are connected in parallel to reduce the ripple current at input and output sides, to control the output voltage at a desired value and to achieve load current sharing. A center-tapped rectifier is adopted at the secondary side of the transformers to achieve full-wave rectification. The boost converter is operated in discontinuous conduction mode (DCM) to automatically draw a sinusoidal line current from an AC source with a high power factor and a low current distortion. Finally, a 240W converter with the proposed topology has been implemented to verify the performance and feasibility of the proposed converter.

Single-Stage PFC AC/DC Full Bridge Converter의 소프트 스위칭에 관한 연구 (A Study on Soft Switching of Single-Stage PFC AC/DC Full Bridge Converter)

  • 임경내;성병기;계문호;권순재;김철우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.401-404
    • /
    • 1998
  • This paper proposes a new soft switching single stage AC/DC full bridge converter with unit power factor and isolated output. This circuit shows that it is possible to combine the boost converter which is for PFC(Power Factor Correction) and full bridge converter which is for DC/DC converter. A simple auxiliary circuit which includes neither lossy components nor active switches eliminates ringing of secondary side of the transformer. The characteristics of the proposed circuit are investigated and the validity is verified by the simulation results.

  • PDF

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

  • Cao, Guoen;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.815-826
    • /
    • 2014
  • An improved bridgeless interleaved boost power factor correction (PFC) rectifier to improve power efficiency and component utilization is proposed in this study. With combined conventional bridgeless PFC circuit and interleaved technology, the proposed rectifier consists of two interleaved and magnetic inter-coupling boost bridgeless converter cells. Each cell operates alternatively in the critical conduction mode, which can achieve the soft-switching characteristics of the switches and increase power capacity. Auxiliary blocking diodes are employed to eliminate undesired circulating loops and reduce current-sensing noise, which are among the serious drawbacks of a dual-boost PFC rectifier. Magnetic component utilization is improved by symmetrically coupling two inductors on a unique core, which can achieve independence from each other based on the auxiliary diodes. Through the interleaved approach, each switch can operate in the whole line cycle. A simple control scheme is employed in the circuit by using a conventional interleaved controller. The operation principle and theoretical analysis of the converter are presented. A 600 W experimental prototype is built to verify the theoretical analysis and feasibility of the proposed rectifier. System efficiency reaches 97.3% with low total harmonic distortion at full load.

PDP용 브리지가 없는 고효율 ZVZCS 역률개선회로 (Bridgeless High Efficiency ZVZCS Power Factor Correction Circuit for PDP Power Module)

  • 조규민;유병규;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.704-708
    • /
    • 2004
  • Recently, many nation have released standard such as IEC 61000-3-2 and IEEE 59, which impose a limit on the harmonic current drawn by equipment connected to AC line in order to prevent the distortion of an AC Line. Therefore, Plasma Display Panel (PDP) which is highlightened in digital display device also has the Power Factor Correction (PFC) circuit to meet the harmonic requirements. In PDP power module, the conventional boost converter is usually used for the PFC circuit. However, it comes serious thermal problem on it's bridge diode due to heat of PDP, and therefore the system stability is not guaranteed. In this paper, the bridgeless boost converter, which is used for PFC circuit of the PDP power module, is designed and verified the possibility of the application in a practical product in a view of efficiency, component count, temperature and etc.

  • PDF

단일 전력단 단상 공진형 영전류 스위칭 역률 개선 회로 (Single-Stage Single-Phase Integrated ZCS Quasi-Resonant Power Factor Preregulator Based on Forward Topology)

  • 구관본;이준영;윤명중
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.639-642
    • /
    • 1999
  • An integrated zero current switching(ZCS) quasi-resonant converter(QRC) for power factor correction and high efficiency with single switch is proposed in this thesis. Boost integrated circuit operating discontinuous conduction mode(DCM) and QRC are used for power factor correction and reducing switching loss, respectively. A prototype converter has been designed and experimented. At rated condition, the THD in the input current waveform of this prototype has approximately 18%. The efficiency is obtained about 70%, the power factor is about 0.985 as well. Therefore, the proposed converter is suitable for a low power level converter with operating switching frequency above several hundred KHz.

  • PDF

단일 전력단 능동 클램프형 고주파 공전 인버터에 관한 연구 (A Study On Sing1e-Stage Active-Clamp Type High Frequency Resonant Inverter)

  • 강진욱;원재선;김동희;조규판;김경식
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2002년도 학술대회논문집
    • /
    • pp.287-291
    • /
    • 2002
  • This paper presents active-clamp class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated active-clamp class-E circuit to boost converter with the function of power factor correction. Boost converter is operated in positive and negative half cycle respectively at line frequency(60Hz), Such a operating in discontinuous conduction mode(DCM) of boost converter performs high power factor. By adding active-clamp circuit in class-E inverter, main switch of inverter part is operated not only ZVS(Zero Voltage Switch) but also reduced the switching voltage stress of main switch. This paper shows that simulation result using Psim 4.1 prove the validity of theoretical analysis. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

무손실 스너버 적용 소프트 스위칭 Single Stage AC-DC Full Bridge Boost 컨버터 (Soft Switching Single Stage AC-DC Full Bridge Boost Converter Using Non-Dissipative Snubber)

  • 김은수;조기연;김윤호;조용현;박경수;안호균;박순구
    • 전력전자학회논문지
    • /
    • 제4권4호
    • /
    • pp.377-383
    • /
    • 1999
  • 종래의 충전기 및 통신용 전원장치에 있어서 입력 역률을 개선시키기 위해 고 역률 컨버터(Power Factor Correction Circuit)가 제안되어 적용되고 있고, 이들 대부분 회로는 Hard Switching을 이용한 정류회로로, 입력역률 1제어와 입력전류를 정현파형을 만들 수 있지만 Switching Noise에 의한 전자파장해(EMI)와 스위칭손실 등의 문제를 안고 있다. 또한, 절연된 DC 출력전압을 얻기 위해서는 고 역률 컨버터 후단에 절연된 DC/DC 컨버터가 적용되어야 함으로써, 주 회로 및 제어회로가 다단으로 구성되는 등 복잡화되는 단점이 있었다. 본 논문에서는 이러한 단점을 극복하기 위해 역률보정회로(PFC)를 갖는 절연된 Single Stage 무손실 스너버적용 고주파 소프트 스위칭 컨버터를 제안하고자 한다.

  • PDF

BF 컨버터의 역률 개선에 관한 연구 (A study on the power factor improvement of the Boost Forward Converter)

  • 임승하
    • 전자공학회논문지T
    • /
    • 제36T권3호
    • /
    • pp.56-63
    • /
    • 1999
  • 본 논문에서는 BF 컨버터의 Active PFC 시스템을 구성하고, 전력 변환시 입력 전류를 전원 전압과 동상인 정현파로 제어하며 직류 출력 전압을 제어하기 위한 PWM-PFM 제어 기법을 사용하여 역률을 개선하였다. FET와 IGBT를 이용하여 본 논문에서 제시한 Boost 컨버터와 인버터 회로를 구성하였고, 제안된 Boost 컨버터의 제어 회로는 마이크로프로세서 80C196으로 구성하였다. 또한 입력 전압이 30V이고, Boost 인덕터가 1.1 mH일 때 정격 출력은 전압 50V, 전류 IA, 듀티비 (Duty Ratio) 0.5 이상으로 하였다. 부하 저항의 변화에 따른 전압 변화를 PWM-PFM 제어 기법을 이용하여 제어하였고, 전류 성형 기법을 이용하여 역률이 0.96 가지 개선됨을 실험으로써 입증하였다.

  • PDF

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.