• Title/Summary/Keyword: Boost 컨버터

Search Result 742, Processing Time 0.024 seconds

A Fuel Cell System with Z-Source Inverter and Ultracapacitors (Z-소스 인버터와 울트라커패시터를 이용한 연료전지 시스템)

  • Kim, Yoon-Ho;Lee, Uk-Young;Kim, Soo-Hong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • When input parameters like gas volume or load of the fuel cell system is changed, the fuel cell system can generate transient voltage disturbances. In this paper, a fuel cell system with Z-source inverter and ultracapacitors for voltage disturbance compensation is proposed. The structure of Z-source inverter is simple. It has unique features that can boost/buck input voltage with a DC/DC converter using only a modified switching pattern. The characteristics of the proposed topologies for the fuel cell system with Z-source inverter and ultracapacitors are analyzed using simulation, and verified by experiments. The simulation and experimental results show that the proposed system is capable of operating with stable response to the system transient and voltage disturbances.

Parallel Operation of Three-Phase Bi-Directional Isolated Interleaved DC-DC Converters for The Battery Charge/Discharge System (배터리 충·방전기 시스템에 적용되는 3상 양방향 절연형 인터리브드 DC-DC 컨버터의 병렬운전)

  • Jo, Hyunsik;Lee, Jaedo;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Recently, parallel operation of dc-dc converters has been widely used in distributed power systems. In this paper, a control method to achieve parallel operation of three-phase bi-directional isolated interleaved dc-dc converters is discussed for the battery charging and discharging system which consists of the 32 battery charger/dischargers and two three-phase bi-directional isolated interleaved dc-dc converters. In the boost mode, the battery energy is delivered to the grid, whereas the grid energy is transferred to the battery in the buck mode operation. The average current sharing control method is employed to obtain an equal conducting of each phase current in the three-phase dc-dc converter. By using the proposed method, the imbalance factor is gratefully reduced from 8 percent to 1 percent. Two 2.5kW three-phase bi-directional dc-dc converter prototype have been built and the proposed method has been verified through experiments.

Design of the Two-Stage DC-DC Converter for 1kW Fuel Cell Power Generation System (1kW급 연료전지 발전용 2단 구성 방식의 DC-DC 컨버터 설계)

  • Yoo, Ho-Won;Jung, Yong-Min;Lim, Seung-Beom;Lee, Jun-Young;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.206-208
    • /
    • 2008
  • In this paper, the two-stage DC-DC converter is proposed to make the control simple and to boost the low input voltage in the fuel cell generating system. The low efficiency of the conventional power converter is caused by a characteristic of the low-voltage and high-current in the fuel cell generating system. High-frequency transformer is needed to block the noise and to guarantee the safety of cell and load as a magnetically insulation. The proposed two-stage DC-DC converter for a fuel cell generation is more efficient than the traditional one-stage converter and easy to control. The design of a high-frequency transformer is also simple. Finally, the utility of the proposed converter is proved by the simulations and experiments.

  • PDF

A Study on Soft Switching Boost Type Power Supply Using Load Resonance for Atmospheric Pressure Plasma Generation (부하 공진을 이용한 소프트 스위칭 방식의 부스트형 대기압 플라즈마 파워서플라이에 대한 연구)

  • Kim, Min-Young;Seo, Kwang-Duk;Han, Hee-Min;Choi, Byung-Jun;Kim, Joohn-Sheok
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.25-28
    • /
    • 2008
  • 본연구는 부스트형 대기압 플라즈마 전원장치에 대한 연구로서 부스트형 전원장치는 플라즈마의 발생을 원활하게 하기위해 커패시터로 모델링되는 부하단에 인가되는 전압을 직접 제어하는 방식을 의미한다. 기존의 정현파 공진형 전원장치는 PWM기법을 이용하여 펄스의 폭을 증감하는 방식으로 전압의 크기를 제어하지만 이 방식은 별도의 공진회로를 이용하여 공진을 일으킨 다음 이를 부하에 인가하는 방식으로 구성되기 때문에 속응성이 떨어지고 균일한 플라즈마를 발생시키기 어렵다. 부스트형 전원장치는 별도의 부스트 컨버터로 직류전압을 제어하여 부하단에 입력되는 전압을 직접 제어하므로 매우 균일한 플라즈마를 발생시킬 수 있는 이점이 있으나 별도의 부스트용 스위치가 필요하고 이로 인한 효율의 감소 및 사이즈의 증가가 되는 문제점이 생긴다. 본 연구에서는 커패시터로 모델링되는 부하를 이용하여 직접 공진을 일으키고 공진된 부하 전압을 직접 부스트 스위치에 인가시키는 방식으로 부스트용 스위치의 소프트 스위칭이 가능한 새로운 방식을 개발하였다. 개발된 방식에서는 부스트용 스위치가 ZCS형태로 켜지고 ZVS형태로 꺼지는 특성을 갖게 되므로 별도의 추가 회로 없이도 획기적인 효율 증가와 방열판 사이즈의 감소로 인한 제품의 경량화가 가능한 장점이 있다. 또한, DC링크 커패시터의 최소화로 인하여 부하단의 아크 문제가 자동적으로 해결되는 장점도 있다. 제안된 제어 방식은 시뮬레이션과 실험으로 그 타당성을 입증하였다.

  • PDF

The Design of PFC Converter based on Digital Controller (디지털 제어기를 이용한 PFC 컨버터의 설계)

  • Lee, Hyeok-Jin;Ju, Jeong-Gyu;Yang, O;An, Tae-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.987-990
    • /
    • 2003
  • 산업현장에서의 인터넷환경 및 원격 제어를 위한 시스템 개발에서 신뢰성이 있고 경제적이며 지능적인 Power Supply가 요구되고 있다. 최근 통신시스템의 Power Supply는 수 kA이상의 출력전류를 가지고 있으며 최소 10개 이상의 모듈로 이루어져 있다. High-End 서버 시스템과 같이 수백 개의 마이크로프로세서를 내장한 시스템은 수십 kW의 전력을 소모한다. 이들이 사용하는 Power Supply는 별도의 시스템 제어기와의 통신으로 시스템에서 발생하는 발열, 소모전력, Total Harmonic Distortion (THD)에 대한 정보를 바탕으로 시스템이 갖는 각각의 Module에 대해 효과적이고 신뢰성 있는 전력공급을 하여야 만다. Distributed Power System (DPS)에서 가장 중요만 역할을 담당하는 Power Factor Correction (PFC) AC-DC Converter의 디지털 제어는 시스템 제어기와의 통신능력을 충분히 고려하면서 DPS를 위한 적합한 솔루션을 제공할 것이다. 본 논문에서는 Digital Signal Processor (DSP)를 사용하여 PFC 제어에 필요한 전파정류전압, 입력전류, 출력전압을 계측하여 역률개선과 THD의 저감을 위한 전류의 추종을 제어하면서 이들 제어기에서의 파라미터를 PC를 통해 모니터하여 최근의 추세를 만족시킬 수 있는 시스템을 구현할 수 있을 것으로 사료된다.

  • PDF

Design of Power Factor Correction High Efficiency PWM Single-Phase Rectifier (역률보상 고효율 PWM 단상 정류기의 설계)

  • Choi, Seong-Hun;Kim, In-Dong;Nho, Eui-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.540-548
    • /
    • 2007
  • The parer proposes a power factor correction high efficiency PWM single-phase rectifier. Its good characteristics such as simple PWM control, low switch stress, and low VAR rating of commutation circuits make the proposed rectifier very suitable for various unidirectional power applications. In addition, the proposed rectifier consists of three boost-converter-type IGBT modules with the switching devices located at the bottom leg of the rectifier scheme, which also enables the use of the same power supply in both control and gate driver, thus resulting in simple control and power circuit structure. The detailed principle of operation and experimental results are also included. In particular, the design guide line is also suggested to make the circuit design of the proposed rectifier easy and fast.

The 500W DC/DC converter development for thermoelectric application (열전소자 활용을 위한 500W급 DC/DC 컨버터 개발)

  • Kim, Sun-Pil;Kim, Se-Min;Park, In-Sun;Ko, Hyun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.2
    • /
    • pp.219-226
    • /
    • 2019
  • This paper describes the development of a 500W DC/DC converter for use with a thermoelectric module(TEM). A thermoelectric device is a structure in which a P-type semiconductor and an N-type semiconductor are electrically connected in series and thermally connected in parallel. There is a feature that an electromotive force is generated by making a temperature difference between both surfaces of a thermoelectric element. This feature can be used as a renewable power source without the need for fossil energy. The proposed converter boosts the low generation voltage of the thermoelectric element to secure the voltage for the grid connection. This converter is a combination of a resonant converter for boosting and a boost-converter for output voltage control. This structure has an advantage that a voltage can be stepped up at a high efficiency and precise output voltage control is possible. We carry out simulations and experiments to verify the validity.

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

A Novel Non-Isolated DC-DC Converter with High Efficiency and High Step-Up Voltage Gain (고효율 및 고변압비를 가진 새로운 비절연형 컨버터)

  • Amin, Saghir;Tran, Manh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.11-13
    • /
    • 2019
  • This paper proposes a novel high step-up non-isolated DC-DC converter, suitable for regulating dc bus in various inherent low voltage micro sources especially for photovoltaic (PV) and fuel cell sources. This novel high voltage Non-isolated Boost DC-DC converter topology is best replacement, where high voltage conversion ratio is required without the transformer and also need continuous input current. Since the proposed topology utilizes the stack-based structure, the voltage gain, and the efficiency are higher than other conventional non-isolated converters. Switches in this topology is easier to control since its control signal is grounding reference. Also, there is no need of extra gate driver and extra power supply for driver circuit, which reduces the cost and size of system. In order to show the feasibility and practicality of the proposed topology principle operation, steady state analysis and simulation result is presented and analyzed in detail. To verify the performance of proposed converter and theoretical analysis 360W laboratory prototype is implemented.

  • PDF

Dynamic Voltage Restorer (DVR) for 6.6[kV]/60[Hz] Power Distribution System Using Two Quasi Z-Source AC-AC Converters (두 개의 Quasi Z-소스 AC-AC 컨버터에 의한 6.6[kV]/60[Hz] 배전계통의 동적 전압 보상기(DVR))

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.199-208
    • /
    • 2012
  • This paper proposes a quasi Z-source DVR(Dynamic Voltage Restorer) system with a series connection of the output terminals, to compensate the voltage variations in the 6.6[kV]/60[Hz] power distribution system. The conventional DVR using one quasi Z-source AC-AC converter has the advantage which it can compensate the voltage variations without the need for the additional energy storage device such as a battery, but it is impossible to compensate for the 50[%] under voltage sags. To solve this problem, a DVR system using two quasi Z-source AC-AC converters with the series connection of the output terminals is proposed. By controlling the duty ratio D in the buck-boost mode, the proposed system can control the compensation voltage. For case verification of the proposed system, PSIM simulation is achieved. As a result, in case that the voltage sags-swells occur 10[%], 20[%], 60[%] in power distribution system, and, in case that the 50[%] under voltage sags-swells continuously occur, all case could compensate by the proposed system. Especially, the compensated voltage THD was examined under the condition of the 10[%]~50[%] voltage sags and the 20[${\Omega}$]~100[${\Omega}$] load changes. The compensated voltage THD was worse for the higher load resistances and more severe voltage sags. Finally, In case of the voltage swells compensation, the compensation factor has approached nearly 1 regardless of the load resistance changes, while the compensation factor of voltage sags was related to the load variations.