• Title/Summary/Keyword: Boost

Search Result 2,872, Processing Time 0.031 seconds

Characteristic Analysis of Soft Switching Multi-Phase Boost Converter (소프트 스위칭 다상 부스트 컨버터의 특성 해석)

  • Lee, Joo-Hyuk;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.529-531
    • /
    • 2008
  • Generation system using regenerative energy like photovoltaic, fuelcell is increased, PCS technology coming into the spotlight. The efficiency of DC-DC converter as part of the PCS is very important, multi-phase boost converter has more advantage than other topology. Input current of the multi-phase boost converter is divided into two inductor current because of parallel structure of the boost converters, thus it has features of decreasing input current ripple and output voltage ripple. Also multi-phase boost converter with soft switching can decrease switching loss using ZCS and ZVS. In this paper, simulation and experiment are performed to verify operation of the proposed converter, and efficiencies of the conventional and proposed converter are compared.

  • PDF

Design of Soft Switched Synchronous Boost Converter

  • Dong, Zhiyong;Jeong, DongGyu;Joung, Gyubum
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.9-16
    • /
    • 2020
  • In this paper, we designed a soft switched synchronous boost converter, which can perform discharging the battery, is simulated, and experimented designed. The converter operates synchronous operation to increase efficiency of the converter. The converter has very small switching losses because of its soft switching characteristics. In this paper, battery discharger with a switching frequency of 100 kHz have been designed. The designed converter also simulated and experimented to prove the converter's characteristics during synchronous operation. The simulated and experimental results have confirmed that the battery discharger had soft switching characteristics. In addition, the experimental results confirm that the converter has high efficiency characteristics. The efficiency of the circuit exceeds 97%, the efficiency of soft switched synchronous boost converter is at least 6% higher than that of conventional PWM boost converter.

ZC-ZVS PWM DC-DC Converter using One Auxiliary Switch (단일 보조 스위치를 이용한 ZC-ZVS PWM DC-DC 컨버터)

  • Park, J.M.;Park, Y.J.;Suh, K.Y.;Mun, S.P.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.158-161
    • /
    • 2003
  • A new soft switching technique that improves performance of the high power factor boost rectifier by reducing switching losses is introduced. The losses are reduced by air active snubber which consists of an inductor, a capacitor a rectifier, and an auxiliary switch. Since the boost switch turns off with zero current, this technique is well suited for implementations with insulated gate bipolar transistors. The reverse recovery related losses of the rectifier are also reduced by the snubber inductor which is connected in series with the boost switch and the boost rectifier. In addition, the auxiliary switch operates with zero voltage switching. A complete design procedure and extensive performance evaluation of the proposed active snubber using a 1.2[kW] high power factor boost rectifier operating from a $90[V_{rms}]$ input are also presented.

  • PDF

A Novel Boost PFC Converter Employing ZVS Based Compound Active Clamping Technique with EMI Filter

  • Mohan, P. Ram;Kumar, M. Vijaya;Reddy, O.V. Raghava
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 2008
  • A Boost Power Factor Correction (PFC) Converter employing Zero Voltage Switching (ZVS) based Compound Active Clamping (CAC) technique is presented in this paper. An Electro Magnetic Interference (EMI) Filer is connected at the line side of the proposed converter to suppress Electro Magnetic Interference. The proposed converter can effectively reduce the losses caused by diode reverse recovery. Both the main switch and the auxiliary switch can achieve soft switching i.e. ZVS under certain condition. The parasitic oscillation caused by the parasitic capacitance of the boost diode is eliminated. The voltage on the main switch, the auxiliary switch and the boost diode are clamped. The principle of operation, design and simulation results are presented here. A prototype of the proposed converter is built and tested for low input voltage i.e. 15V AC supply and the experimental results are obtained. The power factor at the line side of the converter and the converter efficiency are improved using the proposed technique.

The MPPT of Photovoltaic Solar System by Controlled Boost Converter with Neural Network

  • Cha, In-Su;Lim, Jung-Yeol;Yu, Gwon-Jong
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.255-262
    • /
    • 1998
  • The neural network can roughly be classified as the specialized control, indirect control and general schemes. Neural network is adopted for MPPT of solar array. And back propagation algorithm also is used to train neural network controller. We investigate the possibilities of $P_{max}$ control using the neural networks, and then we also examine about operating the solar cell at an optimal voltage comprise of temperature compensated voltage with boost converter. Proposed boost converter of MPPT system is studied by simulation and is implemented by using a microprocessor(80c196kc) which controls duty ratio of the boost converter.

  • PDF

Design of Three-phase Buck-Boost DC-AC Inverter (3상 벅-부스트 DC-AC 인버터 설계)

  • Park, Jong-Gyu;Jang, Eun-Sung;Choi, Hyun-Chil;Shin, Hwi-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2396-2401
    • /
    • 2009
  • The three-phase buck-boost DC-AC inverter generates three alternating output voltages as the differential voltage of three DC-DC individual buck-boost converters. Three converters are driven with three DC-biased and 1200 phase-shifted sinusoidal references. The peak value of the inverter alternating output voltage can be larger or smaller than the value of the direct input voltage. In this paper, a three-phase buck-boost DC-AC inverter is designed and implemented on a prototype with digital controller using a microcontroller.

An Improvement Parallel to the Efficiency of Boost Converter for Power Factor Correction (PFC용 부스트 컨버터의 병렬화에 의한 효율 개선)

  • 전내석;장수형;전일영;박영산;안병원;이성근;김윤식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.120-124
    • /
    • 2001
  • A new technique for improving the efficiency of single-phase high-frequency boost converter is proposed. This converter includes an additional low-frequency boost converter which is connected to the main high-frequency switching device in parallel. The additional converter is controlled at lower frequency. Most of the current flows in the low-frequency switch and so, high-frequency switching loss is greatly reduced accordingly Both switching device are controlled by a simple method; each controller consists of a one-shot multivibrator, a comparator and an AND gate. The converter works cooperatively in high efficiency and acts as if it were a conventional high-frequency boost converter with one switching device. The proposed method is verified by simulation. This paper describes the converter configuration and design, and discusses the steady-state performance concerning the switching loss reduction and efficiency improvement.

  • PDF

A Study on the High Power Factor control in a Boost Rectifier (부스트 정류기의 고역률 제어에 관한 연구)

  • 장수형;박정환;오진석;이성근;김윤식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.431-436
    • /
    • 2001
  • Boost converter operating at the boundary region CCM and DCM is designed. Boost converter is incorporated behind rectifier as an equivalent resistance. Also for a high efficiency and PF, a switch turn-on time is controlled by using the capacitor filter effect. To verify a validity of the designed boost converter 100[W] boost converter is fabricated and also experiment are carried out.

  • PDF

Dynamic Modeling and Controller Design of PWM Buck-Boost AC-AC Converter (PWM Buck-Boost AC-AC 컨버터의 동적 모델링 및 제어기 설계)

  • 최남섭;배영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.749-753
    • /
    • 2003
  • This paper presents an output voltage regulation system using PWM Buck-Boost AC-AC converter for power qualify improvement of custom power. This paper proposes dynamic modeling of the system for control object and in addition, a controller design example. Therefore, system state equation is derived whereby the transfer function could be obtained. The paper shows a regulation controller for tracking the output voltage to the reference under specific operating point. Finally, this paper shows validity and practical applicability of the proposed modelling and system design by experimental results.

  • PDF

Operating Characteristics Analysis of PWM Boost AC-AC Converter for Compensation of Voltage Sag (전압 Sag 보상을 위한 PWM Boost AC-AC 컨버터의 동작 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.315-319
    • /
    • 2003
  • This paper presents modeling and analysis of static and dynamic characteristics in PWM Boost AC-AC converter used for input voltage sag compensation of custom power. Especially, using circuit DQ transformation technique, an equivalent circuit in fundamental frequency domain is obtained which has all the system characteristics. Moreover, voltage gain and input power factor is analytically induced and linearized state equation at the specific operating point is given. Finally, simulation results show the validity of the proposed modelling and analyses.

  • PDF