• Title/Summary/Keyword: Bone-remodeling

Search Result 344, Processing Time 0.031 seconds

Osseointegration of Implants in Rabbit Bone with a Low Calcium Diet and Irradition (저칼슘식이 투여와 방사선조사가 임프란트의 골유착에 미치는 영향에 관한 실험적 연구)

  • Kim So-Jung;Hwang Eui-Hwan;Lee Sang-Rae
    • Imaging Science in Dentistry
    • /
    • v.30 no.1
    • /
    • pp.33-48
    • /
    • 2000
  • Purpose : To investigate osseointergration of titanium implants into the tibia of rabbits, which were fed a low calcium diet and irradiated. Materials and Methods : To prepare the experimental model, control group was fed a normal diet and experimental group was fed a low calcium diet for 4 weeks. And then, titanium implants were inserted into the tibia of each rabbit. Experimental group was subdivided into two groups; low calcium diet/non-irradiation group and low calcium diet/irradiation group. The low calcium diet/irradiation group was irradiated with a single absorbed dose of 15 Gy at the 5th postoperative day. At 12, 19, 33, 47, and 61 days after implantation (1, 2, 4, 6, and 8 weeks after irradiation), the bone formation in the bone-implant interface area was examined by light microscopy and fluorescent microscopy. Results and Conclusions: 1. In the control group, there began to form woven bone in the bone-implant interface area at 12 days after implantation. As the experimental time was going on, the amount of bone which was in contact with the implant was increased. 2. In the low calcium diet/non-irradiation group, there began to form woven bone in the bone-implant interface area at 19 days after implantation. Although the amount of bone which was in contact with the implant was increased as the experimental time was going on, the extent of increased bone was weak as compared with control group. 3. In the low calcium diet/irradiation group, there began to form woven bone incompletely in the bone-implant interface area at 19 days after implantation, but there were vascular connective tissues in the bone-implant interface area over the entire experimental period. 4. In the control group and low calcium diet/non-irradiation group, bone labeling bands were observed at 33 days after implantation, which suggests that the bone formation and remodeling was in process, but interstitial bone remodeling was not observed in the low calcium diet/irradiation group.

  • PDF

Bone Replacement and Grafting with a Biologically Active Ceramic Composite

  • McGee, Thomas Donald
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.41-44
    • /
    • 2001
  • A composite of $Ca_3$(PO$_4$)$_2$ and MgAl$_2$O$_4$ spinel is biologically active and has enduring strength. Its strength depends on the spinel phase. The flaws in the spinel depend on the grain size of the calcium phosphate phase and are not altered by dissolution. The calcium phosphate, ${\alpha}$ tri-calcium phosphate, controls the tissue response. Bone bonds to the implant. A design for a bone graft as a replacement for a section of the diaphysis of a canine femur provides for tensile, compressive, torsional and bending load; and for the physiological processes of bonding and remodeling. A bone plate, used to stabilize the implant at time of surgery was removed after about one year. Over seven years of service have been achieved without internal or external fixation.

  • PDF

The Effects of Mechanical Strain on Bone Cell Proliferation and Recruitment Induced by Osteocytes

  • Ko, Seong-Hee;Lee, Jiy-Hye;Kim, So-Hee
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.179-186
    • /
    • 2008
  • Several lines of evidence suggest that osteocytes play a critical role in bone remodeling. Both healthy and apoptotic osteocytes can send signals to other bone surface cells such as osteoblasts, osteoclasts, osteoclast precursors, and bone lining cells through canalicular networks. Osteocytes responding to mechanical strain may also send signals to other cells. To determine the role for osteocytes an mechanical strain in bone remodeling, we examined the effects of fluid flow shear stress on osteoclast precursor cell and osteoblast proliferation and recruitment induced by osteocytes. In addition, the effects of fluid flow shear stress on osteocyte M-CSF, RANKL, and OPG mRNA expression were also examined. MLO-Y4 cells were used as an in vitro model for osteocytes, RAW 264.7 cells and MOCP-5 cells as osteoclast precursors, and 2T3 cells as osteoblasts. MLO-Y4 cells conditioned medium (Y4-CM) was collected after 24h culture. For fluid flow experiments, MLO-Y4 cells were exposed to 2h of pulsatile fluid flow (PFF) at 2, 4, 8, $16{\pm}0.6\;dynes/cm^2$ using the Flexcell $Streamer^{TM}$ system. For proliferation assays, MOCP-5, RAW 264.7, and 2T3 cells were cultured with control media or 10-100% Y4 CM. Cells were cultured for 3d, and then cells were counted. RAW 264.7 and 2T3 cell migration was assayed using transwells with control media or 10-100% Y4-CM. M-CSF, RANKL and OPG in MLO-Y4 mRNA expression was determined by semiquantitative RT-PCR. Y4-CM increased osteoclast precursor proliferation and migration, but decreased 2T3 cell proliferation and migration. CM from MLO-Y4 cells exposed to PFF caused decreased RAW 267.4 cell proliferation and migration and 2T3 migration compared to control Y4-CM. However, Y4-CM from cells exposed to PFF had no effect on 2T3 osteoblastic cell proliferation. PFF decreased RNAKL mRNA and increased OPG mRNA in MLO-Y4 cells compared to control(without PFF). PFF had no effect on M-CSF mRNA expression in MLO-Y4 cells. These results suggest that osteocytes can regulate bone remodeling by communication with osteoclast precursors and osteoblasts and that osteocytes can communicate mechanical signals to other cells.

AN EXPERIMENTAL STUDY ON THE EFFECT OF CALCIUM SULFATE ON BONE REGENERATION (치과용 연석고가 골조직재생에 미치는 영향에 관한 실험적 연구)

  • Choi, Jang-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.20 no.3
    • /
    • pp.217-227
    • /
    • 1998
  • Calcium sulfate(plaster of Paris) has been used in dental and orthopedic surgery for about 100 years. It is well known that the plaster is bioresorbable, biocompatible, defect conformable and moldable. The purpose of this study is to evaluate two effects of calcium sulfate on bone regeneration, that is, the effects of graft materials and barrier for bone regeneration. Cortical bone defects were formed for recipient site on the femurs of 19 Sprague-Dawley rats. The autogenous particulated bone and calcium sulfate were grafted to the defects. Calcium sulfate paste, $Gore-Tex^R$ membrane(W.L. GORE & ASSOCIATES LTD., U.S.A.) and rubber sheet were used for the shielding materials. The results were as follows : 1. Calcium sulfate that had been grafted in the cortical bone defect was almost resorbed before bone remodeling, resultantly had little effect on bone regeneration. 2. Resoption process of calcium sulfate grafted on the bone grafting area tends to be accelerated, as being divided into numerous small particles progressively. Under the situation where the calcium sulfate was protected, with the coverage of fascia, $Gore-Tex^R$ membrane or rubber sheet, new bone formation was confirmed with presence of calcium sulfate particles over 6 weeks after grafting. 3. In the case of calcium sulfate covered with membrane, distinct bone formation was observed on the marrow space of femur adjacent to the plaster mass. 4. Rubber shielded plaster group revealed new bone trabeculae under the rubber sheet, but it showed ischemic degeneration of superficial cortical bone.

  • PDF

Histomorphometric analysis of microcrack healing after the installation of mini-implants

  • Shin, Soobin;Park, Pan-Soo;Baek, Seung-Hak;Yang, Il-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • Purpose: The goal of this study was to investigate the histomorphometric characteristics of the healing process of microcracks in the cortical bone after the installation of mini-implants (MIs). Methods: Self-drilling MIs were inserted into the tibial diaphysis of twelve adult male New Zealand rabbits. Four MIs per rabbit were placed randomly. The animals were divided into four groups according to the length of the healing period: group A was sacrificed immediately, group B was sacrificed after one week, group C was sacrificed after two weeks, and group D was sacrificed after four weeks. Cortical bone thickness was measured using micro-computed tomography, and histomorphometric analyses of the cumulative length of the microcracks (CLCr) and the total number of microcracks (NCr) were performed using hematoxylin and eosin staining. Results: The microcracks were radially and concentrically aligned in the peri-MI bone. The CLCr decreased significantly one week after the surgery, mainly due to healing of the concentrically aligned microcracks. The CLCr showed another significant decrease from two weeks after the surgery to four weeks after the surgery, mainly reflecting healing of the radially aligned microcracks. A statistically significant decrease in the NCr occurred as the microcracks healed from zero weeks to two weeks. However, no significant difference in the NCr was found between groups C and D. Conclusions: In order to improve the primary stability of MIs, delayed loading and a healing period of a certain length are recommended to ensure the optimal healing of microcracks and bone remodeling.

The Effect of Cyclosporin A on Osteoblast in vitro (Cyclosporin A가 in vitro에서 조골세포에 미치는 영향)

  • Kim, Jae-Woo;Lee, Hyun-Jung;Kang, Jung-Hwa;Ohk, Seung-Ho;Choi, Bong-Kyu;Yoo, Yun-Jung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.4
    • /
    • pp.747-757
    • /
    • 2000
  • Cyclosporin A(CsA) is an immunosuppressive agent widely used for preventing graft rejecting response in organ transplantation. The basic properties of CsA to osteoblast has not been well known yet. A better understanding of the mechanisms of CsA function on bone could provide valuable information regarding basic properties of bone remodeling, pharmacotherapeutic intervention in metabolic bone disease, and the consequences of immunosuppression in bone physiology. The purpose of this study was to investigate the effect of CsA on osteoblast by evaluating parameters of proliferation, collagen synthetic activity, alkaline phosphatase activity, and ALP mRNA expression in mouse calvarial cell. 1. CsA ($3{\mu}g/m{\ell}$) treated mouse calvarial cell showed statistically significant increase in cell proliferation.(P<0.05) 2. CsA($1,\; 3{\mu}g/m{\ell}$) treated MC3T3 cell line showed statistically significant increase in cell proliferation. 3. The amount of collagen of CsA($3{\mu}g/m{\ell}$) treated mouse calvarial cell was decreased statistically significantly. 4. Alkaline phosphatase activity was increased statistically significantly in CsA treated group($1{\mu}g/m{\ell}$). 5. mRNA expression of ALP was increased in CsA treated group These results suggest that CsA could affect bone remodeling by modulating proliferation & differentiation of osteoblast.

  • PDF

A simplified theory of adaptive bone elastic beam buckling

  • Ramtani, Salah;Bennaceur, Hamza;Outtas, Toufik
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.211-225
    • /
    • 2014
  • The usual assumption that the increase of fractures in aging bone is due entirely to lower bone density is taken back with respect to the possibility that aging bone fractures result from a loss of stability, or buckling, in the structure of the bone lattice. Buckling is an instability mode that becomes likely in end-loaded structures when they become too slender and lose lateral support. The relative importance of bone density and architecture in etiology bone fractures are poorly understood and the need for improved mechanistic understanding of bone failure is at the core of important clinical problems such as osteoporosis, as well as basic biological issues such as bone formation and adaptation. These observations motivated the present work in which simplified adaptive-beam buckling model is formulated within the context of the adaptive elasticity (Cowin and Hegedus 1976, Hegedus and Cowin 1976). Our results indicate that bone loss activation process leads systematically to the apparition of new elastic instabilities that can conduct to bone-buckling mechanism of fracture.

New understanding of glucocorticoid action in bone cells

  • Kim, Hyun-Ju
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.524-529
    • /
    • 2010
  • Glucocorticoids (GCs) are useful drugs for the treatment of various diseases, but their use for prolonged periods can cause severe side effects such as osteoporosis. GCs have a direct effect on bone cells, where they can arrest bone formation, in part through the inhibition of osteoblast. On the other hand, GCs potently suppress osteoclast resorptive activity by disrupting its cytoskeleton based on the inhibition of RhoA, Rac and Vav3 in response to macrophage colony-stimulating factor. GCs also interfere with microtubule distribution and stability, which are critical for cytoskeletal organization in osteoclasts. Thus, GCs inhibit microtubule-dependent cytoskeletal organization in osteoclasts, which, in the context of bone remodeling, further dampens bone formation.

A Pilot study of poroelastic modulus measurement in micro-bone tissue (미세 골조직의 공극탄성계수 측정을 위한 예비 연구)

  • 박영환;홍정화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1038-1041
    • /
    • 2004
  • In this study, developed a micro-level experimental setup to measure pore pressure and poroelastic modulus in various strain and strain rate about a stress in micro-structure of bone tissue. It is essential device in the development of the model to analysis the interstitial bone fluid flow of the lacuno-canalicular system to be known that would effect on the bone remodeling. The constitution of the experimental setup is as follows, microscopic image processing system; actuator control unit; load measurement system. A pilot study was used an artificial chemical wood to have similar poroelastic property of bone matrix and conducted to validate the suitability of the measurement system.

  • PDF

Osteopontin and Developing Kidney (Osteopontin과 신장 발달)

  • Yim Hyung-Eun;Yoo Kee-Hwan
    • Childhood Kidney Diseases
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Osteopontin (OPN) is a glycosylated phosphoprotein which mediates cell adhesion and migration, and is produced by bone, macrophages, endothelial cells, and epithelial cells. The many regulatory functions of OPN include bone remodeling, tumor invasion, wound repair, and promotion of cell survival. It is produced by renal tubular epithelial cells, and expression is upregulated in glomerulonephritis, hypertension, ischemic acute renal failure, renal ablation, and UUO. In this review, we discuss about osteopontin in general aspect, expression, role on the development and pathologic condition of neonatal kidney.

  • PDF