• Title/Summary/Keyword: Bone-regeneration

Search Result 1,021, Processing Time 0.028 seconds

The Role of SDF-1𝛼-CXCR4/CXCR7 in Migration of Human Periodontal Ligament Stem Cells

  • Jialei Xu;Fan Yang;Shuhan Luo;Yuan Gao;Dingming Huang;Lan Zhang
    • International Journal of Stem Cells
    • /
    • v.16 no.2
    • /
    • pp.180-190
    • /
    • 2023
  • Background and Objectives: Regenerative endodontic procedures (REPs) are a research hotspot in the endodontic field. One of the biggest problems of REPs is that it is difficult to realize regeneration of pulp-dentin complex and functional reconstruction. The reason is still not clear. We hypothesize that the migration may be different in different dental stem cells. Periodontal ligament stem cells (PDLSCs) may migrate faster than stem cells of apical papilla (SCAPs), differentiating into cementum-like tissue, bone-like tissue and periodontal ligament-like tissue and, finally affecting the outcomes of REPs. Hence, this study aimed to explore the mechanism that regulates the migration of PDLSCs. Methods and Results: After isolating and culturing PDLSCs and SCAPs from human third molars, we compared the migration of PDLSCs and SCAPs. Then we investigated the role of SDF-1𝛼-CXCR4/CXCR7 axis in PDLSC migration. We further investigated the impact of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharide (LPS) on PDLSC migration and the potential mechanism. PDLSCs showed better migration under both noninflammatory and inflammatory conditions than SCAPs. SDF-1𝛼 can promote the migration of PDLSCs by elevating the expression of CXCR4 and CXCR7, increasing the interaction between them, promoting expression of 𝛽-arrestin1 and activating the ERK signaling pathway. P. gingivalis LPS can promote the migration of PDLSCs toward SDF-1𝛼 through increasing the expression of CXCR4 via the NF-𝜅B signaling pathway, promoting the expression of 𝛽-arrestin1, and activating the ERK signaling pathway. Conclusions: This study helped elucidate the potential reason for the difficulty in forming pulp-dentin complex.

Effect of 2-D DBP/PLGA Hybrid Films on Attachment and Proliferation of Intervertebral Disc Cells (2차원적 DBP/PLGA 하이브리드 필름이 디스크 세포의 부착과 증식에 미치는 영향)

  • Ko, Youn-Kyung;Jeong, Jae-Soo;Kim, Soon-Hee;Lim, Ji-Ye;Rhee, John-M.;Kim, Moon-Suk;Lee, Hai-Bang;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • Because demineralized bone particle (DBP) contains various bioactive molecules such as cytokines, it is widely used biomaterials in the field of tissue engineering. In this study, we investigated the effect of 2-dimensional DBP/PLGA hybrid films on adhesion, proliferation and phenotype maintenance of intervertebral disc cells. PLGA films incorporated with different amount (0, 10, 20, 40 and 80 wt%) of DBP were prepared by the solvent evaporation method and characterized by scanning election microscopy (SEM). PLGA film has a flat and smooth surface. According to the increase of content of DBP, the surface of DBP/PLGA film exhibited few agglomerates and increased the roughness of the surface. Annulus fibrosus (AF) and nucleus pulposus (NP) cells were cultured on PLGA and DBP/PLGA film surface, and then examined the cell adhesion and proliferation by the cell count and SEM observation. The result of cell count and SEM observation revealed that 10 and 20% DBP in DBP/PLGA films were superior to adhesion and proliferation of both AF and NP cells. We confirmed that specific gene expression of disc cells on DBP/PLGA film based on the cell count result. Disc cells seeded on 20% DBP/PLGA film expressed the gene of type I and II collagen continuously. Therefore, pertinent content of biomaterials could provide more appropriate condition on adhesion and proliferation of cell. And this results may be used as a basic data for the intervertebral disc regeneration using tissue engineering.

EFFECT OF ENAMEL MATRIX DERIVATIVE (EMD, $EMDOGAIN^{(R)}$) ON THE DIFFERENTIATION OF CULTURED HUMAN PERIODONTAL LIGAMENT CELLS AND MESENCHYMAL STEM CELLS (배양된 사람 치주인대세포와 골수유래간엽줄기세포의 분화에 미치는 법랑기질유도체 (Enamel Matrix Derivative, EMD)의 영향)

  • Park, Sang-Gyu;Jue, Seong-Suk;Kwon, Yong-Dae;Choi, Byung-Joon;Kim, Young-Ran;Lee, Baek-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.4
    • /
    • pp.281-286
    • /
    • 2009
  • Introduction: Enamel matrix derivative (EMD) is a protein which is secreted by Hertwig root sheath and plays a major role in the formation of cementum and attachment of peridontium. Several studies have shown that EMD promoted the proliferation and differentiation of preosteoblasts, osteoblasts and periodontal ligament cells in vitro: however, reports showing the inhibition of osteogenic differentiation by EMD also existed. This study was designed to simultaneously evaluate the effect of EMD on the two cell lines (human mesenchymal stem cells: hMSC, human periodontal ligament derived fibroblasts: hPDLCs) by means of quantitative analysis of some bone related matrices (Alkaline phosphatase : ALP, osteopontin ; OPN, osteocalcin ; OC). Materials and Methods: hMSCs and hPDLCs were expanded and cells in the 4${\sim}$6 passages were adopted to use. hMSc and hPDLCs were cultured during 1,2,7, and 14 days with 0, 50 and 100 ${\mu}g/ml$ of EMD, respectively. ALP activity was assessed by SensoLyte ALP kit and expressed as values of the relative optical density. Among the matrix proteins of the bony tissue, OC and OPN were assessed and quantification of these proteins was evaluated by means of human OC immunoassay kit and human OPN assay kit, respectively. Results: ALP activity maintained without EMD at $1,2^{nd}$ day. The activity increased at $7^{th}$ day but decreased at $14^{th}$ day. EMD increased the activity at $14^{th}$ day in the hPDLCs culture. In the hMSCs, rapid decrease was noted in $7^{th}$ and $14^{th}$ days without regard to EMD concentrations. Regarding the OPN synthesis in hPDLCs, marked decrease of OPN was noted after EMD application. Gradual decrease tendency of OPN was shown over time. In hMSCs, marked decrease of OPN was also noted after EMD application. Overall concentration of OPN was relatively consistent over time than that in hPDLCs. Regarding the OC synthesis, in both of hPDLCs and hMSCs, inhibition of OC formation was noted after EMD application in the early stages but EMD exerted minimal effect at the later stages. Conclusion: In this experimental condition, EMD seemed to play an inhibitory role during the differentiation of hMSCs and hPDLCs in the context of OC and OPN formation. In the periodontium, there are many kinds of cells contributing to the regeneration of oral tissue. EMD enhanced ALP activity in hPDLCs rather than in hMSCs and this may imply that EMD has a positive effect on the differentiation of cementoblasts compared with the effect on hMSCs. The result of our research was consistent with recent studies in which the authors showed the inhibitory effect of EMD in terms of the differentiation of mineral colony forming cells in vitro. This in vitro study may not stand for all the charateristics of EMD; thus, further studies involving many other bone matrices and cellular attachment will be necessary.

Expression of UNC-50 DNA in periodontal tissue of rats after application of intermittent orthodontic force (간헐적 교정력 적용 후 백서 치주인대에서 UNC-50 유전자의 발현)

  • Park, Mi-Kyoung;Lim, Sung-Hoon;Kim, Kwang-Won;Park, Joo-Cheol
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.242-250
    • /
    • 2006
  • Objective: Periodontal ligament fibroblasts have an ectomesenchymal origin and are thought to play a crucial role for not only homeostasis of periodontal tissues but also bone remodeling, wound healing and regeneration of tissues. Recently, it has been reported that UNC-50 is not expressed in gingival fibroblasts but in PDL fibroblasts. The purpose of this study was to examine the expression of UNC-50 and osteocalcin in the periodontium after application of intermittent force. Methods: Twelve rats had 40 grams of mesially-directed force applied at the upper molar for 1 hour/day. Four rats were sacrificed at 1, 3 and 5 days. Immunohistochemical localization of UNC-50 and osteocalcin antibody was carried out. The results showed apposition of new cellular cementum and a slight increase in periodontal space at the tension side. Results: Strong UNC-50 expression was observed in the differentiating cementoblasts close to PDL fibroblasts in the tension side whereas it was barely expressed at the compression side. Expression was strong at day 3, and decreased at day 5. Osteocalcin immunoreactivity expression was strong in differentiating cementoblasts at the tension side. Conclusion: It can be suggested that UNC-50 is related to the differentiation of cementoblasts, and may be responsible for the molecular event in PDL cells under mechanical stress.

Anti-diabetic effects of aqueous and ethanol extract of Dendropanax morbifera Leveille in streptozotocin-induced diabetes model (Streptozotocin에 의해 유도된 당뇨모델동물에서 황칠나무 (Dendropanax morbifera Leveille)의 열수추출물과 에탄올추출물의 당뇨 질환 개선 효능)

  • An, Na Young;Kim, Ji-Eun;Hwang, DaeYoun;Ryu, Ho Kyung
    • Journal of Nutrition and Health
    • /
    • v.47 no.6
    • /
    • pp.394-402
    • /
    • 2014
  • Purpose: Dendropanax morifera Leveille (DML) exhibits diverse biological and pharmacological activities, including anti-oxidative effect, anti-cancer activity, hepatoprotection, immunological stimulation, and bone regeneration. As part of the identification for novel functions of DML, we investigated the therapeutic effects of DML on diabetes induced by streptozotocine (STZ) treatment. Methods: First, the four extracts including the water extract of leaf (DLW), the ethanol extract of leaf (DLE), the water extract of stem (DSW), and the ethanol extract of stem (DSE) were collected from the leaf and stem of DML using a hot water and ethanol solvent. Alterations in body weight, glucose concentration, insulin level, and pancreatic islet structure were investigated in diabetic mice after treatment with extracts of DML for 2 weeks. Results: Among four extracts, the highest level of total polyphenols and total flavonoids was detected in DLW, while the lowest level of these was measured in DSE. The radical scavenging activity was also higher in DLW than in the other three extracts at the concentration of $25-100{\mu}g/mL$, although this activity was maintained at a constant level in all groups at the concentration of $500{\mu}g/mL$. Based on the results of anti-oxidant activity, DLW and DLE were selected for examination of anti-diabetic effects in a diabetes model. Body weight was gradually decreased in all STZ treated groups compared with the No treated group. However, four STZ/DML treated groups maintained a high level of body weight during 7-14 days, while the STZ/vehicle treated group showed a gradual decrease of body weight during the same period. Also, a significant decrease or increase in the concentration of glucose and insulin in the blood of the diabetes model was detected in a subset of groups, although the highest increase was detected in the STZ/DLE-200 treated group. In addition, the histological structure of pancreatic islet was significantly recovered after treatment with DLW and DLE. Conclusion: These results suggest that DLW and DLE may contribute to attenuation of clinical symptoms of diabetes as well as prevent the destruction of pancreatic ${\beta}$-cells in STZ-induced diabetes mice.

The effects of platelet-rich plasma(PRP) in combination with anorganic bovine bone($Bio-Oss^{(R)}$) on the early wound healing of rabbit cranial defects (혈소판 농축 혈장과 혼합된 이종골 이식재($Bio-Oss^{(R)}$)가 가토 두개골 결손부 초기 치유에 미치는 영향)

  • Lim, Dong-Woong;Jang, Hyun-Seon;Park, Ju-Chol;Kim, Heoung-Jung;Lee, Jong-Woo;Kim, Chong-Kwan;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.217-234
    • /
    • 2005
  • 혈소판 농축 혈장은 구강과 안면부 재건수술에 새로이 사용되는 유용한 첨가물이다. 혈소판은 상처 치유과정에서 매우 중요하며, 혈소판은 상처부위에 빠르게 도달하여 응고를 형성한다. 그리고 다양한 성장인자를 분비한다. 이러한 성장인자는 골의 형성과 혈관의 증가, 골 이식재의 치유에 관여하는 것으로 생각된다. 본 연구의 목적은 실험 동물을 통하여 혈소판 농축 혈장에 함유된 혈소판의 정량화를 통한 성장인자 함유량을 추정하고, 방사선학적, 조직학적 평가를 통해 혈소판 농축 혈장이 초기의 골형성에 미치는 영향에 대한 평가를 하는데 있다. 15마리의 가토 두개골에 6mm trephine bur(외경 8mm)를 이용하여 경뇌막의 손상을 주지 않도록 하면서 4개의 결손부를 형성하였다. 각각의 두개골 결손부는 $Bio-Oss^{(R)}$만 이식한 군, PRP만 이식한 군, PRP와 $Bio-Oss^{(R)}$를 혼합하여 이식한군, 그리고 아무것도 이식하지 않은 군을 대조군으로 설정하였다. 각각의 재료를 이식한 후 비흡수성 차폐막($Tefgen^{(R)}$)을 위치시키고 흡수성 봉합사로 일차봉합을 시행하였다. 각 군 당 술 후 1, 2, 4주의 치유기간을 설정하였다. 동물을 희생시키고 두개골을 절제하였다. 먼저 방사선학적인 골 밀도 측정을 시행하고, 조직학적 평가를 위해 통법에 따라 조직 표본을 제작한 후 광학현미경으로 관찰하였다. 또한 가토 귀 변연정맥에서 채취한 10 ml의 혈액을 원심분리하여 혈소판 함유량을 평가하여 다음과 같은 결과를 얻었다. 1. 혈소판 농축 혈장은 일반 혈액에 비해 약 4.02배 많은 수의 혈소판이 함유되어 있었다. 2. 방사선적인 평가에서 1, 2, 4주 사이에 대조군과 비교하여 $Bio-Oss^{(R)}$에 PRP를 이식한 군에서 골의 밀도는 큰 차이를 보이고 있다(p<0.01). 하지만, 동일한 시기에 PRP만 이식한 군과 대조군의 차이는 발견할 수 없었으며 (p>0.05), $Bio-Oss^{(R)}$만 이식한 군과 $Bio-Oss^{(R)}$에 PRP를 이식한 군의 차이 또한 발견할 수 없었다(p>0.05). 3. 조직학적 평가에서 모든 이식재는 시간이 경과할수록 골 형성이 증가함을 알 수 있었다. 대조군에 비해 PRP만 이식한 군에서 더 두꺼운 섬유성 결합을 보이고 있다. 대조군과 PRP만 이식한 군과 비교해 $Bio-Oss^{(R)}$$Bio-Oss^{(R)}$에 PRP를 혼합 이식한 군에서 골의 형성이 더 진행됨을 알 수 있었다. $Bio-Oss^{(R)}$에 PRP를 혼합 이식한 군이 $Bio-Oss^{(R)}$만 이식한 군에서보다 더 많은 신생골 형성을 관찰할 수 있다. 이상의 결과에서 가토의 두개골 결손부에 $Bio-Oss^{(R)}$에 PRP를 혼합 이식하였을 경우 결손부의 초기 골 형성을 촉진 할 수 있음을 시사하였다.

The effect of enamel matrix derivative (EMD) in combination with deproteinized bovine bone material (DBBM) on the early wound healing of rabbit calvarial defects (법랑기질 단백질 유도체와 혼합된 이종골 이식재가 토끼 두개골 결손부 초기 치유에 미치는 영향)

  • Kim, You-Seok;Jang, Hyun-Seon;Park, Ju-Chol;Kim, Heoung-Jung;Lee, Jong-Woo;Kim, Chong-Kwan;Kim, Byung-Ock
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.199-216
    • /
    • 2005
  • 치주치료의 가장 중요한 목적은 상실된 치주조직의 형태적, 기능적 재건이다. 법랑기칠 단백질 유도체(enamel matrix derivative: EMD)는 치주 병소에 사용시 상피세포의 증식을 억제하며 치주인대 및 백악아세포를 활성화시켜 무세포성 백악질 및 치주인대와 골조직의 생성을 유도한다고 보고되고 있다. 또한 법랑기질 단백칠 유도체는 골모세포의 증식 및 분화를 촉진시키며 alkaline phosphatase의 활성 및 mineralized nodule의 형성을 촉진시킨다고 보고되고 있다. 이에 본 연구에서는 토끼 두개골 결손부에 법랑기질 단백질 유도체와 이종골 이식재를 이식한 후 골밀도를 방사선학적으로 분석하고, 신생골 형성 및 주변 조직 반응을 조직학적으로 관찰, 평가하고자 하였다. 토끼 두개골에 6mm trephine bur(외경 8mm)를 이용하여 경뇌막에 손상을 주지 않도록 하면서 4개의 결손부를 형성하였다. 아무것도 이식하지 않은 군을 음성 대조군으로, 이종골 이식재 ($Bio-Oss^{(R)}$, Geistlich, Wolhusen, Switzerland)을 이식한 군을 양성 대조군으로 설정하였다. 법랑기질 단백질 유도체 ($Emdogain^{(R)}$, Biora, Inc., Sweden)만 이식한 군과 법랑기질 단백질 유도체와 이종골 이식재를 혼합하여 이식한 군을 설험군으로 설정하였다. 각각의 재료를 이식한 후 비흡수성 차폐막 ($Tefgen^{(R)}$, Lifecore Biomedical, Inc., U.S.A.)을 위치시키고 흡수성 봉합사로 일차봉합을 시행하였다. 각 군당 술 후 1, 2, 4주의 치유기간을 설정하였다. 동물을 희생시킨 후 두개골을 절제하여 먼저 방사선학적인 골밀도측정을 시행한 후 10% formalin에 고정한 후 통법에 따라 조직표본을 제작하여 광학현미경으로 관찰하였다. 1. 방사선학적인 평가에서 1, 2, 4주에 대조군과 법랑기질 단백질 유도체만 이식한 군과 비교해 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군에서 더 큰 골의 밀도를 보이고 있었다 (P<0.01). 하지만, 동일한 시기에 대조군과 법랑기질 단백질 유도체만 이식한 군과의 차이는 발견할 수 없었으며 (P>0.05), 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군의 차이 또한 발견할 수 없었다 (P>0.05). 2. 조직학적인 평가에서 1, 2, 4주에 대조군과 법랑기질 단백질 유도체만 이식한 군과 비교해 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한군에서 골의 형성이 더 진행됨을 알 수 있었다. 법랑기질 단백질 유도체만 이식한 군이 대조군보다 2주에서 더 많은 신생골을 볼 수 있었으며, 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군이 이종골 이식재만 이식한 군보다 1, 2주에서 더 많은 신생골을 관찰할 수 있었다. 이상의 결과에서 법랑기질 단백질 유도체는 토끼 두개골 결손부 치유단계에서 초기 골 형성을 촉진하는 것으로 사료되며 골 이식시에 법랑기질 단백질 유도체를 적용하는 것은 유용한 술식으로 사료된다.

Protective Effect of Aqueous Extracts of Styela Clava Tunic Against Apoptosis of HepG2 Cells Induced by Hydrogen Peroxide (미더덕껍질의 유수추출물이 과산화수소에 의해 유발된 HepG2간암세포의 세포사멸에 미치는 보호 효과)

  • Koh, Eun Kyoung;Lee, Young Ju;Kim, Ji Eun;Kwak, Moon Hwa;Go, Jun;Son, Hong Joo;Lee, Hee Seob;Jung, Young Jin;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.595-602
    • /
    • 2014
  • Styela Clava tunic (SCT) has found some applications in many areas of medical treatment including as an anti-inflammatory compound, a wound healing film, in guided bone regeneration, and as a food additive. The protective effect of SCT aqueous extract (AE-SCT) on cell death induced by $H_2O_2$ treatment was investigated by measuring the changes in cell viability in HepG2 cells after AE-SCT treatment. High concentrations of antioxidant compounds including flavonoids (3.3 mg/g) and phenolics (32.3 mg/g) were detected in AE-SCT but no significant cytotoxicity was observed in HepG2 cells treated with AE-SCT. The viability of HepG2 cells was also not changed by treatment with different concentrations of AE-SCT after $H_2O_2$ treatment. However, cell viability was significantly increased in cells treated with three different concentrations of AE-SCT before $H_2O_2$ treatment. The greatest increase in cell viability was observed in the group treated with $50{\mu}g/ml$ AE-SCT, when compared with vehicle-treated group. FACS and DAPI staining analysis indicated that the decrease in number of dead cells was dependent on the concentration of AE-SCT. Alterations in the Bax/Bcl-2 ratio after $H_2O_2$ treatment were significantly restored by treatment with different concentrations of AE-SCT. These results indicate that AE-SCT, which contains high levels of antioxidants, may protect cells against death induced by $H_2O_2$ treatment.

THE ROLE OF TYPE 2 DIABETES AS A PREDISPOSING RISK FACTOR ON THE PULPO-PERIAPICAL PATHOGENESIS: REVIEW ARTICLE (치수 치근단 병소의 전구 위험요인으로서의 제 2 형 당뇨의 역할에 관한 소고)

  • Kim, Jin-Hee;Bae, Kwang-Shik;Seo, Deog-Gyu;Hong, Sung-Tae;Lee, Yoon;Hong, Sam-Pyo;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.169-176
    • /
    • 2009
  • Diabetes Mellitus (DM) is a syndrome accompanied with the abnormal secretion or function of insulin, a hormone that plays a vital role in controlling the blood glucose level (BGL). Type land 2 DM are most common form and the prevalence of the latter is recently increasing, The aim of this article was to assess whet her Type 2 DM could act as a predisposing risk factor on the pulpo-periapical pathogenesis. Previous literature on the pathologic changes of blood vessels in DM was thoroughly reviewed. Furthermore, a histopathologic analysis of artificially-induced periapical specimens obtained from Type 2 diabetic and DM-resistant rats was compared. Histopathologic results demonstrate that the size of periapical bone destruction w as larger and the degree of pulpal inflammation was more severe in diabetic rats, indicating that Type 2 D M itself can be a predisposing risk factor that makes the host more susceptible to pulpal infection. The possible reasons may be that in diabetic state the lumen of pulpal blood vessels are thickened by atheromatous deposits, and microcirculation is hindered, The function of polymorphonuclear leukocyte is also impair ed and the migration of immune cells is blocked, leading to increased chance of pulpal infection. Also, lack of collateral circulation of pulpal blood vessels makes the pulp more susceptible to infection. These decrease the regeneration capacity of pulpal cells or tissues, delaying the healing process, Therefore, when restorative treatment is needed in Type 2 DM patients, dentists should minimize irritation to the pulpal tissue un der control of BGL.

Sphingosine-1-Phosphate-Induced Migration and Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle Cells (Sphingosine-1-phosphate에 의한 중간엽 줄기세포의 이동과 평활근세포로의 분화)

  • Song, Hae-Young;Shin, Sang-Hun;Kim, Min-Young;Kim, Jae-Ho
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.183-193
    • /
    • 2011
  • Migration and differentiation of mesenchymal stem cells are crucial for tissue regeneration in response to injury. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a variety of biological processes, including proliferation, survival, differentiation and motility. In the present study, we determined the role of S1P in migration and differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs). S1P stimulated migration of BMSCs in a dose- and time-dependent manner, and pre-incubation of the cells with pertussis toxin completely abrogated S1P-induced migration, suggesting involvement of Gi-coupled receptors in S1P-induced cell migration. S1P elicited elevation of intracellular concentration of $Ca^{2+}$ ($[Ca^{2+}]_i$) and pretreatment with VPC23019, an antagonist of $S1P_1/S1P_3$, blocked S1P-induced migration and increase of $[Ca^{2+}]_i$. Small interfering RNA-mediated knockdown of endogenous $S1P_1$ attenuated S1P-induced migration of BMSCs. Furthermore, S1P treatment induced expression of $\alpha$-smooth muscle actin ($\alpha$-SMA), a smooth muscle marker, and pretreatment with VPC23019 abrogated S1P-induced $\alpha$-SMA expression. S1P induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and pretreatment of cells with SB202190, an inhibitor of p38 MAPK, or adenoviral overexpression of a dominant-negative mutant of the p38 MAPK blocked S1P-induced cell migration and $\alpha$-SMA expression. Taken together, these results suggest that S1P stimulates migration and smooth muscle differentiation of BMSCs through an $S1P_1$-p38 MAPK-dependent mechanism.