• Title/Summary/Keyword: Bone morphogenetic protein-2 (BMP-2)

Search Result 174, Processing Time 0.025 seconds

Effect of the combined use of bone morphogenetic protein and platelet-derived growth factor on bone formation in nude mouse (누드마우스에서 골 형성에 대한 BMP와 PDGF 복합사용의 효과)

  • Lee, Seoung-Ho;Choi, Byung-Ho;Zhu, Shi-Jiang;Huh, Jin-Young;Jung, Jae-Hyung;Kim, Byung-Yong
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.263-269
    • /
    • 2005
  • Bone morphogenetic protein(BMP) and platelet-derived growth factor(PDGF) have been demonstrated tostimulate bone formation when applied locally in vivo. To explore whether or not the combined use of BMP and PDGF could have promotive effect and synergic interaction on bone formation in vivo, bone marrow mesenchymal stem cells were treated with BMP-2, PDGF-BB, or BMP-2 plus PDGF-BB, and then these cells were injected into the subcutaneous space on the dorsum of nude mice. The bone formation was evaluated after 12 weeks. Histomorphometric analysis demonstrated that the subcutaneous nodules formed in nude mice contained 25.3% newly formed bone in the BMP-2 treated cells, 14.4% newly formed bone in the PDGF-BB treated cells, and 8.9% newly formed bone in the RMP-2 plus PDGF-BB treated cells. The results showed that the combination of BMP-2 and PDGF-BB had neither a promotive effect nor synergic interact on bone formation in vivo.

Development of Refolding Process to Obtain Active Recombinant Human Bone Morphogenetic Protein-2 and its Osteogenic Efficacy on Oral Stem Cells

  • Lee, Ji-Hye;Jang, Young-Joo
    • International Journal of Oral Biology
    • /
    • v.42 no.2
    • /
    • pp.71-78
    • /
    • 2017
  • BMP-2 is a well-known TGF-beta related growth factor, having a significant role in bone and cartilage formation. It has been employed to promote bone formation in some clinical trials, and to differentiate mesenchymal stem cells into osteoblasts. However, it is difficult to obtain this protein in its soluble and active form. hBMP-2 is expressed as an inclusion body in the bacterial system. To continuously supply hBMP-2 for research, we optimized the refolding of recombinant hBMP-2 expressed in E. coli, and established an efficient method by using detergent and alkali. Using a heparin column, the recombinant hBMP-2 was purified with the correct refolding. Although combinatorial refolding remarkably enhanced the solubility of the inclusion body, a higher yield of active dimer form of hBMP-2 was obtained from one-step refolding with detergent. The refolded recombinant hBMP-2 induced alkaline phosphatase activity in mouse myoblasts, at $ED_{50}$ of 300-480ng/ml. Furthermore, the expressions of osteogenic markers were upregulated in hPDLSCs and hDPSCs. Therefore, using the process described in this study, the refolded hBMP-2 might be cost-effectively useful for various differentiation experiments in a laboratory.

Effect of Yukmigihwang-tang kamibang on the Expression of Osteo-related Genes, TG2 and BMP4 (육미지황탕가미방이 골형성 관련 유전자인 TG2와 BMP4의 전사활성에 미치는 영향)

  • 신용욱;박용일;김홍렬;이응세
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.190-197
    • /
    • 2002
  • Objectives : This study was performed to examine the effect of Yukmigiwhang-tang kamibang, a mixture of oriental herbal extracts, on the transcription of bone fonnation genes, BMP4 (bone morphogenetic protein 4) and TG2 (transglutaminase-2). Methods : Bone-related cells, MG-63 (human male osteosarcoma), HOS-TE85 (human female osteosarcoma), and KG-l (bone marrow) were cultured with portions of Yukmigiwhang-tang kamibang and the transcription activities of bone-related genes, BMP4 (bone morphogenetic protein 4) and TG2 (transglutaminase-2), were determined by Reverse-Transcription Polymerase Chain Reaction (RT-PCR). Results : Transcription of BMP4 gene in HOS-TE85 cell increased up to 40% at 0.3% (v/v) of Yukmigiwhang- tang kamibang extract and that of TG2 gene in MG-63 cells also increased up to 40% at 0.3-0.4% of the same extract. Although it was less significant when compared to those in other cells, the transcription of BMP4 gene in KG-l cells also increased up to 10 to 25%. Conclusions : These results clearly demonstrated that Yukmigiwhang-tang kamibang have an effect on transcription activity of bone-related genes, TG2 and BMP4, suggesting that it may play an important role in bone formation.

  • PDF

Biodegradable Screws Containing Bone Morphogenetic Protein-2 in an Osteoporotic Rat Model

  • Jin, Eun-Sun;Kim, Ji Yeon;Lee, Bora;Min, JoongKee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • Objective : The aim of this study was to evaluate the effect for biodegradable screws containing bone morphogenetic protein-2 (BMP-2) in an osteoporotic rat model. Methods : Twenty-four female Wistar rat (250-300 g, 12 weeks of age) were randomized into four groups. Three groups underwent bilateral ovariectomy (OVX). Biodegradable screws with or without BMP-2 were inserted in the proximal tibia in two implantation groups. The extracted proximal metaphysis of the tibiae were scanned by exo-vivo micro-computed tomography. Evaluated parameters included bone mineral density (BMD), trabecular bone volume (BV/TV), trabecular number, trabecular thickness, and trabecular separation (Tb.Sp). The tibia samples were pathologically evaluated by staining with by Hematoxylin and Eosin, and trichrome. Results : Trabecular formation near screw insertion site was evident only in rats receiving BMP-2 screws. BMD and BV/TV significantly differed between controls and the OVX and OVX with screw groups. However, there were no significant differences between control and OVX with screw BMP groups. Tb.Sp significantly differed between control and OVX and OVX with screw groups (p<0.05), and between the OVX and OVX with screw BMP group (p<0.05), with no statistically significant difference between control and OVX with screw BMP groups. Over the 12 weeks after surgery, bone lamellae in direct contact with the screw developed more extensive and thicker trabecular bone around the implant in the OVX with screw BMP group compared to the OVX with screw group. Conclusion : Biodegradable screws containing BMP-2 improve nearby bone conditions and enhance ostoeintegration between the implant and the osteoporotic bone.

Stepwise verification of bone regeneration using recombinant human bone morphogenetic protein-2 in rat fibula model

  • Nam, Jung-Woo;Kim, Hyung-Jun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.6
    • /
    • pp.373-387
    • /
    • 2017
  • Objectives: The purpose of this study was to introduce our three experiments on bone morphogenetic protein (BMP) and its carriers performed using the critical sized segmental defect (CSD) model in rat fibula and to investigate development of animal models and carriers for more effective bone regeneration. Materials and Methods: For the experiments, 14, 16, and 24 rats with CSDs on both fibulae were used in Experiments 1, 2, and 3, respectively. BMP-2 with absorbable collagen sponge (ACS) (Experiments 1 and 2), autoclaved autogenous bone (AAB) and fibrin glue (FG) (Experiment 3), and xenogenic bone (Experiment 2) were used in the experimental groups. Radiographic and histomorphological evaluations were performed during the follow-up period of each experiment. Results: Significant new bone formation was commonly observed in all experimental groups using BMP-2 compared to control and xenograft (porcine bone) groups. Although there was some difference based on BMP carrier, regenerated bone volume was typically reduced by remodeling after initially forming excessive bone. Conclusion: BMP-2 demonstrates excellent ability for bone regeneration because of its osteoinductivity, but efficacy can be significantly different depending on its delivery system. ACS and FG showed relatively good bone regeneration capacity, satisfying the essential conditions of localization and release-control when used as BMP carriers. AAB could not provide release-control as a BMP carrier, but its space-maintenance role was remarkable. Carriers and scaffolds that can provide sufficient support to the BMP/carrier complex are necessary for large bone defects, and AAB is thought to be able to act as an effective scaffold. The CSD model of rat fibula is simple and useful for initial estimate of bone regeneration by agents including BMPs.

Polydopamine-mediated surface modifications of poly ʟ-lactic acid with hydroxyapatite, heparin and bone morphogenetic protein-2 and their effects on osseointegration

  • Yun, Young Jin;Kim, Han-Jun;Lee, Deok-Won;Um, Sewook;Chun, Heung Jae
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.244-254
    • /
    • 2018
  • Surface modified poly ${\text\tiny{L}}$-lactic acid (PLLA) samples with hydroxyapatite (HA), heparin and bone morphogenetic protein-2 (BMP-2) mediated by polydopamine (pDA) coating (PLLA/pDA/HA/Hep/BMP-2) were prepared, and their effects on the enhancements of bone formation and osseointegration were evaluated in vitro and in vivo as compared to PLLA, PLLA/pDA/HA, and PLLA/pDA/Hep/BMP-2. The changes in surface chemical compositions, morphologies and wettabilities were observed by X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and water contact angle measurements. Pre-coating of HA particles with pDA provided uniform and homogeneous anchoring of particles to PLLA surface. In addition, the strong ionic interaction between heparin and pDA led PLLA surface readily heparinized for loading of BMP-2. In vitro experiments revealed that the levels of alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin (OCN) gene expression were higher in MG-63 human osteosarcoma cell lines grown on PLLA/pDA/HA/Hep/BMP-2 than on control PLLA, PLLA/pDA/HA, and PLLA/pDA/Hep/BMP-2. In vivo studies using micro-computed tomography (micro-CT) also showed that PLLA/pDA/HA/Hep/BMP-2 screw exhibited greatest value of bone volume (BV) and bone volume/tissue volume (BV/TV) among samples. Histological evaluations with H&E and Von Kossa staining demonstrated that a combination of HA and BMP-2 contributed to the strong osseointegration.

Postulated release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2) from demineralized dentin matrix

  • Um, In-Woong;Ku, Jeong-Kui;Lee, Bu Kyu;Yun, Pil-Young;Lee, Jeong Keun;Nam, Jeong-Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.3
    • /
    • pp.123-128
    • /
    • 2019
  • Demineralized dentin matrix (DDM) has been used as a recombinant human bone morphogenetic protein-2 (rhBMP-2) carrier in many clinical trials. To optimize the clinical safety and efficacy of rhBMP-2 with DDM, efforts have been made to improve the delivery of rhBMP-2 by 1) lowering the administered dose, 2) localizing the protein, and 3) prolonging its retention time at the action site as well as the bone forming capacity of the carrier itself. The release profile of rhBMP-2 that is associated with endogenous BMP in dentin has been postulated according to the type of incorporation, which is attributed to the loosened interfibrillar space and nanoporous dentinal tubule pores. Physically adsorbed and modified, physically entrapped rhBMP-2 is sequentially released from the DDM surface during the early stage of implantation. As DDM degradation progresses, the loosened interfibrillar space and enlarged dentinal tubules release the entrapped rhBMP-2. Finally, the endogenous BMP in dentin is released with osteoclastic dentin resorption. According to the postulated release profile, DDM can therefore be used in a controlled manner as a sequential delivery scaffold for rhBMP-2, thus sustaining the rhBMP-2 concentration for a prolonged period due to localization. In addition, we attempted to determine how to lower the rhBMP-2 concentration to 0.2 mg/mL, which is lower than the approved 1.5 mg/mL.

Purification and biological activity of recombinant human bone morphogenetic protein-2 produced by E. coli expression system (E. coli 발현 시스템에 의해 생산된 recombinant human bone morphogenetic protein-2의 정제와 생물학적 활성)

  • Choi, Kyung-Hee;Moon, Keumok;Kim, Soo-Hong;Yun, Jeong-Ho;Jang, Kyung-Lib;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • Purpose: Bone morphogenetic protein-2(BMP-2) has been shown to possess significant osteoinducitve potential. There have been attempts to overcome a limitation of mass production, and economical efficiency of BMP. The aim of this study was to produce recombinant human BMP-2(rhBMP-2) from E. coli in a large scale and evaluate its biological activity. Materials and Methods: The E.coli strain BL21(DE3) was used as a host for rhBMP-2 production. Dimerized rhBMP-2 was purified by affinity chromatography using Heparin column. To determine the physicochemical properties of the rhBMP-2 expressed in E. coli, we examined the HPLC profile and performed Western blot analysis. The effect of the purified rhBMP-2 dimer on osteoblast differentiation was examined by alkaline phosphatase (ALP) activity and representing morphological change using C2C12 cell. Results: E. coli was genetically engineered to produce rhBMP-2 in a non-active aggregated form. We have established a method which involves refolding and purifying a folded rhBMP-2 dimer from non-active aggregates. The purified rhBMP-2 homodimer was characterized by SDS-PAGE as molecular weight of about 28kDa and eluted at 34% acetonitrile, 13.27 min(retention time) in the HPLC profile and detected at Western blot. The purified rhBMP-2 dimer stimulated ALP activity and induced the transformation from myogenic differentiation to osteogenic differentiation. Conclusion: rhBMP-2 was produced in E. coli using genetic engineering. The purified rhBMP-2 dimer stimulated ALP activity and induced the osteogenic differentiation of C2C12 cells.

Effect of recombinant human bone morphogenetic protein-2 on bisphosphonate-treated osteoblasts

  • Kwon, Taek-Kyun;Song, Jae-Min;Kim, In-Ryoung;Park, Bong-Soo;Kim, Chul-Hoon;Cheong, In-Kyo;Shin, Sang-Hun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.40 no.6
    • /
    • pp.291-296
    • /
    • 2014
  • Objectives: Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a side effect of bisphophonate therapy that has been reported in recent years. Osteoclastic inactivity by bisphosphonate is the known cause of BRONJ. Bone morphogenetic protein-2 (BMP-2) plays an important role in the development of bone. Recombinant human BMP-2 (rhBMP-2) is potentially useful as an activation factor for bone repair. We hypothesized that rhBMP-2 would enhance the osteoclast-osteoblast interaction related to bone remodeling. Materials and Methods: Human fetal osteoblast cells (hFOB 1.19) were treated with $100{\mu}M$ alendronate, and 100 ng/mL rhBMP-2 was added. Cells were incubated for a further 48 hours, and cell viability was measured using an MTT assay. Expression of the three cytokines from osteoblasts, receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL), osteoprotegerin (OPG), and macrophage colony-stimulating factor (M-CSF), were analyzed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Results: Cell viability was decreased to $82.75%{\pm}1.00%$ by alendronate and then increased to $110.43%{\pm}1.35%$ after treatment with rhBMP-2 (P<0.05, respectively). OPG, RANKL, and M-CSF expression were all decreased by alendronate treatment. RANKL and M-CSF expression were increased, but OPG was not significantly affected by rhBMP-2. Conclusion: rhBMP2 does not affect OPG gene expression in hFOB, but it may increase RANKL and M-CSF gene expression.

Bone Regenerative Effects of Biphasic Calcium Phosphate Collagen, Bone Morphogenetic Protein 2, Mesenchymal Stem Cells, and Platelet-Rich Plasma in an Equine Bone Defect Model

  • Eun-bee Lee;Hyunjung Park;Jong-pil Seo
    • Journal of Veterinary Clinics
    • /
    • v.40 no.2
    • /
    • pp.85-92
    • /
    • 2023
  • Fractures in the horse industry are challenging and a common cause of death in racehorses. To accelerate fracture healing, tissue engineering (TE) provides promising ways to regenerate bone tissues. This study aimed to evaluate the osteogenic effects of biphasic calcium phosphate collagen (BCPC) graft, bone morphogenetic protein 2 (BMP2), mesenchymal stem cell (MSC), and platelet-rich plasma (PRP) treatments in horses. Four thoroughbred horses were included in the study, and, in each horse, three cortical defects with a diameter of 5 mm and depth of 10 mm were formed in the third metacarpal bones (MC) and metatarsal bones (MT). The defects were randomly assigned to one of six treatment groups (saline, BCPC, BMP2, MSC, PRP, and control). Injections of saline, BMP2, PRP, or MSCs were made at 1, 3, and 5 weeks after defect surgery. Bone regeneration effects were assessed by radiography, quantitative computed tomography (QCT), micro-computed tomography (μCT), histopathological, and histomorphometric evaluation. The new bone ratio (%) in the histomorphometric evaluation was higher in the BMP2 group than in the control and saline groups. Radiographic and QCT values were significantly higher in the BCPC groups than in the other groups. QCT values of the BMP2 group were significantly higher than in the control and saline groups. The present study demonstrated that BCPC grafts were biologically safe and showed osteoconductivity in horses and the repeated injections of BMP2 without a carrier can be simple and promising TE factors for treating horses with bone fractures.