• Title/Summary/Keyword: Bone marrow stem cell

Search Result 270, Processing Time 0.022 seconds

Identification of Cell Type-Specific Effects of DNMT3A Mutations on Relapse in Acute Myeloid Leukemia

  • Seo-Gyeong Bae;Hyeoung-Joon Kim;Mi Yeon Kim;Dennis Dong Hwan Kim;So-I Shin;Jae-Sook Ahn;Jihwan Park
    • Molecules and Cells
    • /
    • v.46 no.10
    • /
    • pp.611-626
    • /
    • 2023
  • Acute myeloid leukemia (AML) is a heterogeneous disease caused by distinctive mutations in individual patients; therefore, each patient may display different cell-type compositions. Although most patients with AML achieve complete remission (CR) through intensive chemotherapy, the likelihood of relapse remains high. Several studies have attempted to characterize the genetic and cellular heterogeneity of AML; however, our understanding of the cellular heterogeneity of AML remains limited. In this study, we performed single-cell RNA sequencing (scRNAseq) of bone marrow-derived mononuclear cells obtained from same patients at different AML stages (diagnosis, CR, and relapse). We found that hematopoietic stem cells (HSCs) at diagnosis were abnormal compared to normal HSCs. By improving the detection of the DNMT3A R882 mutation with targeted scRNAseq, we identified that DNMT3A-mutant cells that mainly remained were granulocyte-monocyte progenitors (GMPs) or lymphoid-primed multipotential progenitors (LMPPs) from CR to relapse and that DNMT3A-mutant cells have gene signatures related to AML and leukemic cells. Copy number variation analysis at the single-cell level indicated that the cell type that possesses DNMT3A mutations is an important factor in AML relapse and that GMP and LMPP cells can affect relapse in patients with AML. This study advances our understanding of the role of DNMT3A in AML relapse and our approach can be applied to predict treatment outcomes.

Osteogenic Differentiation of Bone Marrow Stem Cells Using Thermo-Sensitive Hydrogels (온도감응성 수화젤을 이용한 골수간엽줄기세포의 골분화 유도)

  • Kim, Sun-Kyung;Hyun, Hoon;Kim, Soon-Hee;Yoon, Sun-Jung;Kim, Moon-Suk;Rhee, John-M.;Khang, Gil-Son;Lee, Hai-Bang
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.196-201
    • /
    • 2006
  • Poly (ethylene glycol)-based diblock and triblock thermo- sensitive polyester copolymers were investigated for application on tissue engineering and injectable biomaterials in drug delivery system due to their nontoxicity, biocompatibility and biodegradability. We synthesized the diblock copolymers consisting of methoxy poly (ethylene glycol) (MPEG) (Mn=750 g/mole) and poly $(\varepsilon-caprolactone)$ (PCL) by ring opening polymerization of $\varepsilon-CL$ with MPEG as an initiator in the presence of HCl $Et_2O$. The effect of diblock copolymers on in vivo osteogenic differentiation of rat bone marrow stromal cells (BMSCS) with and without the presence of osteogenic supplements (dexamethasone) was investigated. Thin sections were cut from paraffin embedded tissues and histological sections were stained by H&E, von Kossa, and immunohistochemical staining for osteocalcin. In conclusion, dexamethasone containing thermo- sensitive hydrogel might be improved osteogenic differentiation of BMSCs. We expect the osteoinduction effect to be excellent when it uses stem cell or other osteogenic materials.

Effect of Fibroblast Growth Factor 23 on Osteoblastic Differentiation and Mineralization of D1 Mesenchymal Stem Cells (섬유모세포성장인자-23이 D1 간엽줄기세포에서 조골세포로의 분화 및 기질 광화에 미치는 영향)

  • Park, Kyeong-Lok
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.331-337
    • /
    • 2016
  • Although fibroblast growth factor 23 (FGF23) is exclusively produced in osteoblasts and osteocytes, its main target is the kidney, where it decreases phosphate reabsorption by suppressing Na-phosphate cotransporters. Independently of its action on phosphate homeostasis, FGF23 also inhibits bone formation in vivo. In a calvarial osteoblastic cell model, FGF23 was shown to negatively affect extracellular matrix mineralization. This study investigated whether FGF23 had similar effects on osteoblast maturation, including differentiation and mineralization of bone marrow-derived mesenchymal stem cells (MSCs). D1 MSCs were cultured in an osteogenic medium containing β-glycerophosphate, ascorbic acid, and dexamethazone. Osteoblastic differentiation was evaluated by alkaline phosphatase (Alp) staining, and matrix mineralization was evaluated by alizarin red staining and calcium deposition. The expression of differentiation-stimulating genes Runx2, Alp, and osteocalcin and mineralization-inhibiting genes Enpp1 and Ank was analyzed using semiquantitative RT-PCR. Supraphysiological doses of FGF23 did not stimulate proliferation or osteoblastic differentiation of MSCs. Matrix mineralization 1, 2, and 3 weeks after the FGF23 treatment did not vary between control and FGF23 groups, although time-dependent enhancement of mineralization was obvious. Calcium deposition was also unchanged after the FGF23 treatment. mRNA expression levels of differentiation- and mineralization-related genes were also similar between the groups. Despite these negative findings, FGF23 signaling through FGF receptors seemed to function normally, with phosphorylation of the Erk protein more evident in the FGF23 group than in controls. These findings suggest that unlike calvarial osteoblasts, FGF23 is not likely to affect osteoblastic differentiation and mineralization of MSCs.

Alternative Isoforms of the mi Transcription Factor (MITF) Regulate the Expression of mMCP-6 in the Connective Tissue-Type Mast Cells Cultured with Stem Cell Factor (SCF에서 배양한 결합조직형 비만세포에서 mMCP-6 발현을 조절하는 MITF 이형체)

  • Lee, Sun-Hee;Guan, Xiu-Ying;Kim, Dae-Ki
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1348-1354
    • /
    • 2008
  • mi transcription factor (MITF) is important in regulating the differentiation of mast cells. In particular, MITF regulates the transcription of the mouse mast cell-specific serine protease (mMCP)-6 gene, which is generally expressed by the connective tissue-type of mast cells. In this study, we investigated alternative isoforms of MITF that regulate transcription of the mMCP-6 gene in bone marrow-derived cultured mast cells in mice. The expression of MITF isoforms was examined by RT-PCR. We observed that MITF-A, -E, -H and -Mc were expressed by mucosal-type mast cells cultured in the presence of IL-3, whereas the connective tissue-type mast cells cultured in the presence of stem cell factor (SCF) expressed MITF-A. Overexpression of MITF isoforms increased luciferase activity through the mMCP-6 promoter in NIH-3T3 cells and elevated the level of mMCP-6 expression in the MC/9 mast cell line. Moreover, mMCP-6 expression in mast cells was significantly inhibited by the depletion of MITF. The transcriptional activity and DNA binding of MITF-A was comparable to that of MITF isoforms, including MITF-E, -H, and -Mc. Our results therefore suggest that MITF-A may be an important isoform of MITF in regulating the transcription of mMCP-6 in mouse connective tissue mast cells.

Immature thymocyte antigen, JL1, as a possible immunodiagnostic and immunotherapeutic target for leukemia

  • Shin, Young Kee;Choi, Eun Young;Kim, Seok Hyung;Park, Seong Hoe
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 2001
  • The identification of tumor-specific antigens has represented a critical milestone in cancer diagnosis and therapy. Clinical research in this area for leukemia has also been driven over the past few decades by the hope that surface antigens with restricted tissue expression would be identified. Disappointingly, only a small number of the leukemic antigens identified to date, meet sufficient criteria to be considered viable immunophenotypic markers. In this paper, we nominate anti-JL1 monoclonal antibody as an immunodiagnostic and immunotherapeutic candidate for leukemia. The JL1 molecule appears to be a novel cell surface antigen, which is strictly confined to a subpopulation of limited stages during the hematopoietic differentiation process. Despite the restricted distribution of the JL1 antigen in normal tissues and cells, anti-JL1 monoclonal antibody specifically recognizes various types of leukemia, irrespective of immunophenotypes. On the basis of these findings, we propose JL1 antigen as a tumor-specific marker, which shows promise as a candidate molecule for diagnosis and immunotherapy in leukemia, and one that spares normal bone marrow stem cells.

  • PDF

Isolated Recurrence of Intracranial Granulocytic Sarcoma Mimicking a Falx Meningioma in Acute Myeloblastic Leukemia

  • Cho, Won-Ho;Choi, Young-Jin;Choi, Byung-Kwan;Cha, Seung-Heon
    • Journal of Korean Neurosurgical Society
    • /
    • v.47 no.5
    • /
    • pp.385-388
    • /
    • 2010
  • Intracranial granulocytic sarcomas are rare tumors, which are composed of immature granulocytic cells. Although it has been well known that these tumors are associated with acute myeloblastic leukemia (AML), they have been almost always related to bone marrow relapse. However, isolated recurrence of granulocytic sarcoma following complete remission from prior AML is extremely rare, especially in the central nervous system. A 44-year-old male presented with isolated recurrence of granulocytic sarcoma mimicking a falx meningioma two years after complete remission by allogenic peripheral blood stem cell transfusion (PBSCT) in the acute myelomonoblastic leukemia (FAB, M4). Because of depressed mental state and mass effect, total surgical resection was performed. Pathological findings were compatible with the granulocytic sarcoma. There was no evidence of leukemic relapse in the peripheral blood. We suggest that this phenomenon can be explained by the hypothesis that a certain barrier effect such as blood brain barrier might lead to the proliferation of intracranial leukemic cells which metastasized before PBSCT.

A Study of Bian Zheng Lun Zhi on Aplastic Anemia (재생불량성빈혈(再生不良性貧血)의 변증론치(辨證論治)에 대(對)한 고찰(考察))

  • Hong Sang-Hoon;Lee Seung-Yeon
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.13 no.2
    • /
    • pp.79-92
    • /
    • 1999
  • Background/Aims: Aplastic anemia is defined as pancytopenia (anaemia, leucopenia, and thrombocytopenia) result from aplasia of the bone marrow. Many studies have shown that survival rate of aplastic anemia is 50-60% with immunomodulation therapy. In Korea, there is a lack of research considering oriental herbal medicine with aplastic anemia. Methods: It was compared and analyzed that recently several experimental or clinical reports of oriental herbal medicine on aplastic anemia. Results and Conclusion: The oriental herb of Panax ginseng radix, Cprdonopsis pilosula radix, Astragalus membranaceus radix, Atractylodes marcrocephala. Cervi Cornu Parvum, Epimedii Herba, Boshniakiae Herba, Morindae Radix, Angelicae gigantis Radix, Cascutae Semen, Lycii Fructus, Polygoni Multiflori Radix potently stimulated hematopoietic stem cell activity, Response rate to oriental herbal medicine of aplastic anemia was 30-60% and effect rate of aplastic anemia was 73-93%, Bian zheng Lun zhi(辨證論治 treatment according to syndrome differentiation) which based on Shen xu(腎虛) is presumed to approach highest degree effect in response rate.

  • PDF

Immunostimulating Activity by Protoplast Fusants between Ganoderma Iucidum and Lentinus edodes (영지와 표고의 융합체의 면역활성 증강작용)

  • Moon, Chul;Hyun, Jin-Won;Kim, Ha-Won;Shim, Mi-Ja;Kim, Byong-Kak
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.199-205
    • /
    • 2000
  • On the inter-order protoplast fusants of Lentinus edodes and Ganoderma lucidum was the antitumor activity test performed and the fusant P22 was selected. The hot water extract of the cultured mycelia of P22 were purified by DEAE-cellulose chromatographya and the resulting purified fraction was designated as P22A. It was found to be a proteoglycan whose molecular weight was 47 kDa. When examined for immunopotentiation activity, P22A increased the number of colony forming unit in the bone marrow stem cells to 3-folds. It also potentiated the secretion of nitric oxide in activated macrophages to 2-folds. In humoral immune response, it increased the activities of the alkaline phosphatase in differentiated B cells to 1.6-folds and the number of plaque forming cells to 1.8-folds. In cellular immune response, it restored the depressed response of delayed type hypersensitivity in tumor bearing mice to normal level. These results suggest that P22A have potential to restore the decreased immune activity of the tumor bearing mice to normal level.

  • PDF