• 제목/요약/키워드: Bone marrow derived mesenchymal stem cell

검색결과 102건 처리시간 0.023초

태반유래 줄기세포와 골수유래 줄기세포에서의 마이크로RNA 발현비교 (Comparison of MicroRNA Expression in Placenta-derived Mesenchymal Stem Cells and Bone Marrow-derived Stem Cells)

  • 김수환
    • 생명과학회지
    • /
    • 제24권11호
    • /
    • pp.1238-1243
    • /
    • 2014
  • 중간엽줄기세포(mesenchymal stem cell, MSC)은 세포치료로 각광받아 널리 사용되고 있다. 이들은 줄기세포의 분화성을 이용하여 많은 만성질환에 연관되어 치료제로 사용되고 있다. 줄기세포는 다른 화학적 치료법에 비해 많은 장점을 가지고 있다. 왜냐하면 줄기세포치료는 자기자신, 혹은 동종의 세포를 이용한 치료이기 때문에 화학 치료에 비해 부작용이나 치료의 위험성이 덜하다. 그리고 마이크로RNA또한 최근 기 존재와 기능이 밝혀져서 연구되고 있는데 특히 항암, 세포생장촉진 등의 기능을 이용해 항암, 만성질환 치료에 접목되어 치료제로의 역할이 기대된다. 마이크로RNA는 대부분의 대사과정이나 항상성조절에 관여되어있다. 따라서 마이크로RNA가 저 발현 혹은 과 발현하게 되면 만성질환으로 이어지게 된다. 하지만 줄기세포와 마이크로RNA의 상호간 보조효과는 잘 연구되어 있지 않다. 따라서 이들 간의 상관관계를 확인하기 위하여 태반유래 줄기세포(PDSC)와 골수줄기세포(BM-MSC), 대조군으로 섬유아세포(Fibroblast, WI-38)을 사용하여 이들이 발현하는 마이크로RNA 발현을 확인해 보았다. 각각의 MSC 세포주에 대하여 특정 마이크로RNA의 발현량을 확인해 보았다. 결과 PDSC의 경우엔 마이크로RNA-34a의 발현이 높았고 BM-MSC의 경우에는 마이크로RNA-27a, 33a, 33b, 211의 발현이 높은 것을 확인할 수 있었다. 따라서 우리는 각각의 MSC세포주와 그들이 발현하는 기능성 마이크로RNA을 연관지어 효과적인 세포치료에 활용될 수 있을 것을 기대한다.

Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution

  • Ying Liu;Yan Chen;Xiao-Hua Li;Chong Cao;Hui-Xi Zhang;Cui Zhou;Yu Chen;Yun Gong;Jun-Xiao Yang;Liang Cheng;Xiang-Ding Chen;Hui Shen;Hong-Mei Xiao;Li-Jun Tan;Hong-Wen Deng
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.342-355
    • /
    • 2023
  • Background and Objectives: Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results: To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions: Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.

A Comparison of ROCK Inhibitors on Human Bone Marrow-Derived Mesenchymal Stem Cell Differentiation into Neuron-Like Cells

  • Lee, Hyun-Sun;Kim, Kwang-Sei;O, Eun-Ju;Joe, Young-Ae
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.386-395
    • /
    • 2010
  • Bone marrow-derived mesenchymal stem cells (BM-MSC) are a multipotent cell population that can differentiate into neuron-like cells. Previously it has been reported that murine BM-MSC can differentiate into neuron-like cells by co-treatment with a Rho-associated kinase (ROCK) inhibitor -Y27632 and $CoCl_2$. In this study, we compared several ROCK inhibitors for the ability to induce human BM-MSCs to differentiate into neuron-like cells in the presence of $CoCl_2$. Y27632 with high specificity for ROCK at 1-30 ${\mu}M$ was best at inducing neuronal differentiation of MSCs. Compared to HA1077 and H1152, which also effectively induced morphological change into neuron-like cells, Y27632 showed less toxicity even at 100 ${\mu}M$, and resulted in longer multiple branching processes at a wide range of concentrations at 6 h and 72 h post-induction. H89, however, which has less specificity by inhibition of protein kinase A, S6 kinase 1 and MSK1 with similar or greater potency, was less effective at inducing neuronal differentiation of MSCs. Simvastatin, which can inhibit Rho, Ras, and Rac by blocking the synthesis of isoprenoid intermediates, showed little activity for inducing morphological changes of MSCs into neuron-like cells. Accordingly, the expression patterns for neuronal cell markers,including ${\beta}$-tubulin III, neuron-specific enolase, neurofilament, and microtubule-associated protein, were consistent with the pattern of the morphological changes. The data suggest that the ROCK inhibitors with higher specificity are more effective at inducing neuronal differentiation of MSCs.

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.

인간 지방조직에서 분리된 줄기세포의 표면항원 및 다분화능 확인 (Isolation and Characterization of Cells from Human Adipose Tissue Developing into Osteoblast and Adipocyte)

  • 조혜경
    • 대한임상검사과학회지
    • /
    • 제40권2호
    • /
    • pp.106-112
    • /
    • 2008
  • Bone marrow derived mesenchymal stem cells (BMSCs) are largely studied for their potential clinical use. But it is hard to get enough number of those cells for clinical trials and give serious pain to the patients. Adipose tissue is derived from the embryonic mesenchyme and contains a stroma that is easily isolated with large amount. This cell population (adipose derived stem cells: ADSCs) can be isolated from human lipoaspirates and like MSCs, differentiate toward the osteogenic, adipogenic, myogenic and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the ADSCs extracted from omental or subcutaneous fat tissue were expanded during third to fifth passages. The phenotype of the ADSCs was identified by the conventional cell surface markers using flow cytometry: positive for CD29 and CD44, but negative for CD34, CD45, CD117 and HLA-DR that similar to those observed on BMSCs. The ADSCs were able to differentiate into the osteoblast or adipocytes with induction media. Finally, ADACs expressed multiple CD marker antigens similar to those observed on BMSCs and differentiated into osteoblast, adipocyte. With this, human adipotissue contains multipotent cells and may represent an alternative stem cell source to bone marrow-derived MSCs.

  • PDF

임상적용을 위한 세포치료제로서의 성체 중간엽줄기세포 (Adult Mesenchymal Stem Cells for Cell Therapy in Clinical Application)

  • 송인환
    • Journal of Yeungnam Medical Science
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Human bone marrow-derived mesenchymal stem cells (MSCs) are a rare population of undifferentiated cells that have the capacity of self renewal and the ability to differentiate into mesodermal phenotypes, including osteocytes, chondrocytes, and adipocytes in vitro. Recently, MSCs have been shown to reside within the connective tissue of most organs, and their surface phenotype has been well analyzed. Many reports showed that transplanted MSCs enhanced regeneration as well as functional improvement of damaged organs and tissues. The wide differentiation plasticity of MSCs was expected to contribute to their demonstrated efficacy in a wide variety of experimental animal models and in human clinical trials. However, new findings suggest that the ability of MSCs to alter the tissue microenvironment via secretion of soluble factors may contribute more significantly than their capacity for differentiation in tissue repair. This review describes what is known about the cellular characteristics and differentiation potential of MSCs, which represent a promising stem cell population for further applications in regenerative medicine.

  • PDF

High Dose of FGF-2 Induced Growth Retardation via ERK1/2 De-phosphorylation in Bone Marrow-derived Mesenchymal Stem Cells

  • Shim, Kwang Yong;Saima, Fatema Tuj;Eom, Young Woo
    • 대한의생명과학회지
    • /
    • 제23권2호
    • /
    • pp.49-56
    • /
    • 2017
  • Fibroblast growth factor (FGF)-2 is one of the most effective growth factors to increase the growth rate of mesenchymal stem cells (MSCs). Previously, we reported that low dose of FGF-2 (1 ng/ml) induced proliferation of bone marrow-derived mesenchymal stem cells (BMSCs) through AKT and ERK activation resulting in reduction of autophagy and senescence, but not at a high dose. In this study, we investigated the effects of high dose FGF-2 (10 ng/ml) on proliferation, autophagy and senescence of BMSCs for long term cultures (i.e., 2 months). FGF-2 increased the growth rate of BMSCs in a dose dependent manner for a short term (3 days), while during long term cultures (2 months), population doubling time was increased and accumulated cell number was lower than control in BMSCs when cultured with 10 ng/ml of FGF-2. 10 ng/ml of FGF-2 induced immediate de-phosphorylation of ERK1/2, expression of LC3-II, and increase of senescence associated ${\beta}$-galactosidase (SA-${\beta}$-Gal, senescence marker) expression. In conclusion, we showed that 10 ng/ml of FGF-2 was inadequate for ex vivo expansion of BMSCs because 10 ng/ml of FGF-2 induced growth retardation via ERK1/2 de-phosphorylation and induction of autophagy and senescence in BMSCs.

A Number of Bone Marrow Mesenchymal Stem Cells but Neither Phenotype Nor Differentiation Capacities Changes with Age of Rats

  • Tokalov, Sergey V.;Gruner, Susanne;Schindler, Sebastian;Iagunov, Alexey S.;Baumann, Michael;Abolmaali, Nasreddin D.
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.255-260
    • /
    • 2007
  • Bone marrow (BM) derived mesenchymal stem cells (MSC) are pluripotent cells which can differentiate into osteogenic, adipogenic and other lineages. In spite of the broad interest, the information about the changes in BM cell composition, in particularly about the variation of MSC number and their properties in relation to the age of the donor is still controversial. The aim of this study was to investigate the age associated changes in variations of BM cell composition, phenotype and differentiation capacities of MSC using a rat model. Cell populations were characterized by flow cytometry using light scattering parameters, DNA content and a set of monoclonal antibodies. Single cell analysis was performed by conventional fluorescent microscopy. In vitro culture of MSC was established and their phenotype and capability for in vitro differentiation into osteogenic and adipogenic cells was shown. Age related changes in tibiae and femurs, amount of BM tissue, BM cell composition, proportions of separated MSC and yield of MSC in 2 weeks of in vitro culture were found. At the same time, neither change in phenotype no in differentiation capacities of MSC was registered. Age-related changes of the number of MSC should be taken into account whenever MSC are intended to be used for investigations.

Molecular Characterization of Neurally Differentiated Human Bone Marrow-derived Clonal Mesenchymal Stem Cells

  • Yi, TacGhee;Lee, Hyun-Joo;Cho, Yun-Kyoung;Jeon, Myung-Shin;Song, Sun U.
    • IMMUNE NETWORK
    • /
    • 제14권1호
    • /
    • pp.54-65
    • /
    • 2014
  • Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, with the ability to differentiate into different cell types. Additionally, the immunomodulatory activity of MSCs can downregulate inflammatory responses. The use of MSCs to repair injured tissues and treat inflammation, including in neuroimmune diseases, has been extensively explored. Although MSCs have emerged as a promising resource for the treatment of neuroimmune diseases, attempts to define the molecular properties of MSCs have been limited by the heterogeneity of MSC populations. We recently developed a new method, the subfractionation culturing method, to isolate homogeneous human clonal MSCs (hcMSCs). The hcMSCs were able to differentiate into fat, cartilage, bone, neuroglia, and liver cell types. In this study, to better understand the properties of neurally differentiated MSCs, gene expression in highly homogeneous hcMSCs was analyzed. Neural differentiation of hcMSCs was induced for 14 days. Thereafter, RNA and genomic DNA was isolated and subjected to microarray analysis and DNA methylation array analysis, respectively. We correlated the transcriptome of hcMSCs during neural differentiation with the DNA methylation status. Here, we describe and discuss the gene expression profile of neurally differentiated hcMSCs. These findings will expand our understanding of the molecular properties of MSCs and contribute to the development of cell therapy for neuroimmune diseases.

Homing and Restorative Effects of Bone Marrow-Derived Mesenchymal Stem Cells on Cisplatin Injured Ovaries in Rats

  • Liu, Jiabin;Zhang, Haiying;Zhang, Yun;Li, Nan;Wen, Yuku;Cao, Fanglei;Ai, Hao;Xue, Xiaoou
    • Molecules and Cells
    • /
    • 제37권12호
    • /
    • pp.865-872
    • /
    • 2014
  • Premature ovarian failure (POF) is a long-term adverse effect of chemotherapy treatment. However, current available treatment regimens are not optimal. Emerging evidence suggests that bone marrow-derived mesenchymal stem cells (BMSCs) could restore the structure and function of injured tissues, but the homing and restorative effects of BMSCs on chemotherapy injured ovaries are still not clear. In this study, we found that granulosa cell (GC) apoptosis induced by cisplatin was reduced when BMSCs were migrated to granulosa cells (GCs) in vitro. Chemotherapy-induced POF was induced by intraperitoneal injection of cisplatin in rats. BMSCs labeled with enhanced green fluorescent protein (EGFP) were injected into the rats via the tail vein to investigate the homing and distribution of BMSCs in vivo. The number of BMSCs in the ovarian hilum and medulla was greater than in the cortex, but no BMSCs were found in the follicles and corpus lutea. In addition, the BMSCs treatment group's antral follicle count and estradiol levels increased after 30 days, compared with the POF group. Hence, our study demonstrates that intravenously delivered BMSCs can home to the ovaries, and restore its structure and function in POF model rats.