• Title/Summary/Keyword: Bone contact

Search Result 379, Processing Time 0.023 seconds

Influence of soft tissue and bone thickness on the dimensional change of peri-implant soft tissues;A clinical follow-up study (연조직 및 골 두께가 임플란트 주위 연조직 형태에 끼치는 영향에 관한 임상추적연구)

  • Chang, Moon-Taek
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.1
    • /
    • pp.187-197
    • /
    • 2005
  • The aim of this study was to investigate the influence of peri-implant soft tissue and bone thickness on the early dimensional change of peri-implant soft tissue. Seventy-seven non-submerged implants of 39 patients which had been loaded more than 6 months were selected for the study. Following clinical parameters were measured; bucco-lingual bone width of the alveolar bone for implant placement before implant surgery; distance between implant shoulder and the first bone/implant contact at the surgery; presence of plaque, probing depth, bleeding on probing, width of keratinized mucosa, mucosa thickness, distance between implant shoulder and peri-implant mucosa, crown margin location at follow-up examination. The results showed that distance between implant shoulder and peri-implant mucosa (DIM) was correlated with probing depth and width of keratinized mucosa (p < 0.05). In addition, mucosa thickness was also correlated with probing depth (p<0.05). However, the bone width of alveolar bone and soft tissue thickness were not found to be correlated with DIM. It is important to understand the meaning of peri-implant tissue dimension in relation to dimensional changes of peri-implant soft tissue which designates appearance of implant-supported restorations. Future study is needed to elucidate the significance of the buccal bone thickness and soft tissue thickness with respect to the change of peri-implant soft tissue margin with the use of an instrument capable of measuring buccal bone thickness directly.

Stress Intensity Factors and Possible Crack Propagation Mechanisms for a Crack Surface in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰 접촉하중시 Polyethylene Tibia 표면균열의 응력확대계 수와 복합전파거동에 관한 연구)

  • Kim, Byung-Soo;Moon, Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2019-2027
    • /
    • 2003
  • Pitting wear is a dominant from of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, K$\_$I/and $_{4}$, were calculated for a surface crack in a polyethylene-CoCr-bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive K$\_$I/ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $_{4}$ was the greatest when the load was directly adjacent to the crack (g/a=${\pm}$1). Sliding friction caused a substantial increase of both K$\_$I/$\^$max/ and $_{4}$$\^$max/. The effective Mode I stress intensity factors, K$\_$eff/, were the greatest at g/a=${\pm}$1, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of K$\_$eff/ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

Study for Possible Crack Propagation Mechanisms for a Surface Cracked in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰접촉하중 시 Polyethylene tibia 요소의 표면균열 복합전파 거동에 관한 연구)

  • Kim, B.S.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1222-1227
    • /
    • 2003
  • Pitting wear is a dominant form of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, $K_{I}$ and $K_{II}$, were calculated for a surface crack in a polyethylene - CoCr - bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive $K_{I}$ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $K_{II}$, was the greatest when the load was directly adjacent to the crack $(g/a={\pm}1)$. Sliding friction caused a substantial increase of both $K_{I}^{max}$ and $K_{II}^{max}$. The effective Mode I stress intensity factors, $K_{eff}$, were the greatest at $g/a={\pm}1$, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of $K_{eff}$ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

  • PDF

Fabrication and Characterization of Novel Electrospun PVPA/PVA Nanofiber Matrix for Bone Tissue Engineering

  • Franco, Rose-Ann;Nguyen, Thi Hiep;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.51.2-51.2
    • /
    • 2011
  • A novel electrospun nanofiber membrane was fabricated using combined poly (vinylphosphonic acid) (PVPA) and polyvinyl alcohol (PVA) intended for bone tissue engineering applications. PVPA is a proton-conducting polymer used as primer for bone implants and dental cements to prevent corrosion and brush abrasion. The phosphonate groups of PVPA have the ability to crosslink and attach itself to the hydroxyapatite surface facilitating faster integration of the biomaterial to the bone matrix. PVA was combined with PVPA to provide hydrophilicity, biocompatibility and improve its spinnability. To improve its mechanical strength, PVPA/PVA and neat PVA mixtures were combined to produce a multilayer scaffold. The physical and chemical properties of the of the fabricated matrix was investigated by SEM and TEM morphological analyses, tensile strength test, XRD, FT-IR spectra, swelling behavior and biodegradation rates, porosity and contact angle measurements. Biocompatibility was also examined in vitro by cytotoxicity and cell proliferation studies with MTT assay and cell adhesion behavior by SEM and confocal microscopy.

  • PDF

Stress-strain distribution at bone-implant interface of two splinted overdenture systems using 3D finite element analysis

  • Hussein, Mostafa Omran
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • PURPOSE. This study was accomplished to assess the biomechanical state of different retaining methods of bar implant-overdenture. MATERIALS AND METHODS. Two 3D finite element models were designed. The first model included implant overdenture retained by Hader-clip attachment, while the second model included two extracoronal resilient attachment (ERA) studs added distally to Hader splint bar. A non-linear frictional contact type was assumed between overdentures and mucosa to represent sliding and rotational movements among different attachment components. A 200 N was applied at the molar region unilaterally and perpendicular to the occlusal plane. Additionally, the mandible was restrained at their ramus ends. The maximum equivalent stress and strain (von Mises) were recorded and analyzed at the bone-implant interface level. RESULTS. The values of von Mises stress and strain of the first model at bone-implant interface were higher than their counterparts of the second model. Stress concentration and high value of strain were recognized surrounding implant of the unloaded side in both models. CONCLUSION. There were different patterns of stress-strain distribution at bone-implant interface between the studied attachment designs. Hader bar-clip attachment showed better biomechanical behavior than adding ERA studs distal to hader bar.

The Biological Effects of Calcium Phosphate Coated Implant for Osseointegration in Beagle Dogs (성견에 식립한 인산칼슘 피복 임플란트가 골조직 유착에 미치는 생물학적인 영향)

  • Shim, Eon-Cheol;Lim, Sung-Bin;Chung, Chin-Hyung;Kim, Jong-Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.4
    • /
    • pp.651-671
    • /
    • 2003
  • The influence of calcium phosphate (Ca-P) coating on the bone response of titanium implants was investigated two types of titanium implants, i.e. as -machined ,as -machined with Ca-P coating, were prepared. The Ca-P coating produced by OCT Inc technique. These implants were inserted into the left and right femur of beagle dog, After implantation periods of 3 days, 1weeks, weeks, 4weeks, 8weeks, 12weeks. 24weeks, the bone-implant interface was evaluated histologically, histomorphometrically , and removal torque. Histological evaluation revealed no new bone formation around different implant materials after 2weeks of implantation. After 4 weeks, Ca-P coated implants showed a higher amount of bone contact than either of the non coated implants. After 12weeks, bone healing was almost completed. And implant were removed by reverse torque rotation with torque-measuring device. Mean torque values for 4weeks control were 2.375Kgf.cm and experimental were 2.725Kgf.cm. And mean torque values for 8weeks control were 1.25Kgf.cm and experimental were 1.0Kgf.cm On the basis of these findings, we concluded that deposition of a Ca-P coating on an implant has a beneficial effect on the bone response to this implant during the healing phase. Besides implant surface conditions the bone response is also determined by local implant site condition.

The Fate of Calvarial Bone Graft in Nasal Tip Plasty Patients Followed Up for Over 10 Years (10년 이상 장기 추적된 두개골 외판을 이용한 비첨성형술 환자의 골이식편의 운명)

  • Kim, Deok-Jung;Lee, Soo-Hyang;Hwang, Eun-A;Choi, Hyun-Gon;Kim, Soon-Heum;Shin, Dong-Hyeok;Uhm, Ki-Il
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.671-675
    • /
    • 2010
  • Purpose: In order to maintain corrected nasal tip projection, strong support is important. Authors used calvarial bone graft method for this purpose. Patients were followed up about permanency of the bone graft for a long time. Methods: From 1995 to 1998, author performed calvarial bone graft on 30 adult patients with secondary cleft lip and nose deformity. Patients were observed for 34 months. There were no specific complications, and results were satisfactory. We could confirm the permanence of the calvarial bone graft in 3 patients by photography and radiologic studies for 10 years follow-up. Results: None of the patients showed size change or displacement. But the portion of graft facing the tip was absorbed resulting in loss of tip projection and short nose in two patients. One patient had fracture on the middle of the graft. This caused depression from lower portion of the dorsum to the tip. Conclusion: Despite of autogenous grafts such as calvarial bone, absorption of the bone may occur when compressed with tension for a long period. And the graft in the nasal tip not having any contact with the nasal bone may cause absorption of the graft.

Biodegradable Screws Containing Bone Morphogenetic Protein-2 in an Osteoporotic Rat Model

  • Jin, Eun-Sun;Kim, Ji Yeon;Lee, Bora;Min, JoongKee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.5
    • /
    • pp.559-567
    • /
    • 2018
  • Objective : The aim of this study was to evaluate the effect for biodegradable screws containing bone morphogenetic protein-2 (BMP-2) in an osteoporotic rat model. Methods : Twenty-four female Wistar rat (250-300 g, 12 weeks of age) were randomized into four groups. Three groups underwent bilateral ovariectomy (OVX). Biodegradable screws with or without BMP-2 were inserted in the proximal tibia in two implantation groups. The extracted proximal metaphysis of the tibiae were scanned by exo-vivo micro-computed tomography. Evaluated parameters included bone mineral density (BMD), trabecular bone volume (BV/TV), trabecular number, trabecular thickness, and trabecular separation (Tb.Sp). The tibia samples were pathologically evaluated by staining with by Hematoxylin and Eosin, and trichrome. Results : Trabecular formation near screw insertion site was evident only in rats receiving BMP-2 screws. BMD and BV/TV significantly differed between controls and the OVX and OVX with screw groups. However, there were no significant differences between control and OVX with screw BMP groups. Tb.Sp significantly differed between control and OVX and OVX with screw groups (p<0.05), and between the OVX and OVX with screw BMP group (p<0.05), with no statistically significant difference between control and OVX with screw BMP groups. Over the 12 weeks after surgery, bone lamellae in direct contact with the screw developed more extensive and thicker trabecular bone around the implant in the OVX with screw BMP group compared to the OVX with screw group. Conclusion : Biodegradable screws containing BMP-2 improve nearby bone conditions and enhance ostoeintegration between the implant and the osteoporotic bone.

A short-term clinical study of marginal bone level change around microthreaded and platform-switched implants

  • Yun, Hee-Jung;Park, Jung-Chul;Yun, Jeong-Ho;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.211-217
    • /
    • 2011
  • Purpose: The marginal bone levels around implants following restoration are used as a reference for evaluating implant success and survival. Two design concepts that can reduce crestal bone resorption are the microthread and platform-switching concepts. The aims of this study were to analyze the placement of microthreaded and platform-switched implants and their short-term survival rate, as well as the level of bone around the implants. Methods: The subjects of this study were 27 patients (79 implants) undergoing treatment with microthreaded and platform-switched implants between October 2008 and July 2009 in the Dental Hospital of Yonsei University Department of Periodon-tology. The patients received follow-up care more than 6 months after the final setting of the prosthesis, at which time periapical radiographs were taken. The marginal bone level was measured from the reference point to the lowest observed point of contact between the marginal bone and the fixture. Comparisons were made between radiographs taken at the time of fixture installation and those taken at the follow-up visit. Results: During the study period (average of 11.8 months after fixture installation and 7.4 months after the prosthesis delivery), the short-term survival rate of microthreaded and platform-switched implants was 100% and the marginal bone loss around implants was $0.16{\pm}0.08$ mm, the latter of which is lower than the previously reported values. Conclusions: This short-term clinical study has demonstrated the successful survival rates of a microthread and platform-switched implant system, and that this system is associated with reduced marginal bone loss.

The Formation of Extragraft Bone Bridging after Anterior Cervical Discectomy and Fusion : A Finite Element Analysis

  • Kwon, Shin Won;Kim, Chi Heon;Chung, Chun Kee;Park, Tae Hyun;Woo, Su Heon;Lee, Sung-Jae;Yang, Seung Heon
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.6
    • /
    • pp.611-619
    • /
    • 2017
  • Objective : In addition to bone bridging inside a cage or graft (intragraft bone bridging, InGBB), extragraft bone bridging (ExGBB) is commonly observed after anterior cervical discectomy and fusion (ACDF) with a stand-alone cage. However, solid bony fusion without the formation of ExGBB might be a desirable condition. We hypothesized that an insufficient contact area for InGBB might be a causative factor for ExGBB. The objective was to determine the minimal area of InGBB by finite element analysis. Methods : A validated 3-dimensional, nonlinear ligamentous cervical segment (C3-7) finite element model was used. This study simulated a single-level ACDF at C5-6 with a cylindroid interbody graft. The variables were the properties of the incorporated interbody graft (cancellous bone [Young's modulus of 100 or 300 MPa] to cortical bone [10000 MPa]) and the contact area between the vertebra and interbody graft (Graft-area, from 10 to $200mm^2$). Interspinous motion between the flexion and extension models of less than 2 mm was considered solid fusion. Results : The minimal Graft-areas for solid fusion were $190mm^2$, $140mm^2$, and $100mm^2$ with graft properties of 100, 300, and 10000 MPa, respectively. The minimal Graft-areas were generally unobtainable with only the formation of InGBB after the use of a commercial stand-alone cage. Conclusion : ExGBB may be formed to compensate for insufficient InGBB. Although various factors may be involved, solid fusion with less formation of ExGBB may be achieved with refinements in biomaterials, such as the use of osteoinductive cage materials; changes in cage design, such as increasing the area of polyetheretherketone or the inside cage area for bone grafts; or surgical techniques, such as the use of plate/screw systems.