• 제목/요약/키워드: Bone Age Assessment

검색결과 107건 처리시간 0.027초

Automated Bone Age Assessment Using Artificial Intelligence: The Future of Bone Age Assessment

  • Byoung-Dai Lee;Mu Sook Lee
    • Korean Journal of Radiology
    • /
    • 제22권5호
    • /
    • pp.792-800
    • /
    • 2021
  • Bone age assessments are a complicated and lengthy process, which are prone to inter- and intra-observer variabilities. Despite the great demand for fully automated systems, developing an accurate and robust bone age assessment solution has remained challenging. The rapidly evolving deep learning technology has shown promising results in automated bone age assessment. In this review article, we will provide information regarding the history of automated bone age assessments, discuss the current status, and present a literature review, as well as the future directions of artificial intelligence-based bone age assessments.

정규화된 형상 모델을 이용한 뼈 나이 측정 방법 (A Bone Age Assessment Method Based on Normalized Shape Model)

  • 유주환;이종민;김회율
    • 한국멀티미디어학회논문지
    • /
    • 제12권3호
    • /
    • pp.383-396
    • /
    • 2009
  • 뼈 나이 측정은 소아의 내분비계 관련 질병 진단을 위해 소아과에서 널리 사용되는 방법이다. 그러나 전문 인력이 부족하여 자동화된 측정 방법에 대한 꾸준한 요구가 있었다. 따라서 본 논문에서는 패턴 인식기법을 이용한 자동화된 뼈 나이 측정 알고리즘을 제안한다. 제안하는 알고리즘은 X-ray 영상에서 손가락뼈의 각 부분을 자동으로 분류하는 과정과 분류된 뼈 영상으로부터 정규화된 형상 모델을 추출하는 과정, 그리고 정규화된 형상 모델로부터 뼈 나이를 측정하는 과정으로 구성된다. 제안하는 알고리즘은 능동 형상 모델(Active Shape Model: ASM)을 이용하여 나이 측정에 사용되는 특정값 추출의 정확도를 향상시켰으며, 뼈 나이 분류를 위해 사용된 Support Vector Machine(SVM)의 입력으로 정규화된 형상 모델로부터 얻어진 각 뼈의 크기와 비율을 특징값으로 사용하였다. 성능 평가를 위해서 한양대학교 부속병원에서 제공한 영상에 대해 전문가가 평가한 나이와 제안한 알고리즘을 이용하여 측정된 나이를 통계적으로 비교 분석하였다. 실험을 통하여 본 논문에서 제안한 특징값과 알고리즘으로 뼈 나이를 진단한 결과, 전문가에 의한 결과와 평균 0.679살의 오차 이내의 뛰어난 뼈 나이 측정 성능을 보였다.

  • PDF

골단판 수에 따른 뼈 나이 측정 결과의 정확성 분석 (Accuracy Analysis of Bone Age Assessment by the Number of Epiphyseal Plates)

  • 권재성;김형준;이종민;김회율
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.395-396
    • /
    • 2007
  • Bone age assessment has been widely used to measure the ossification in pediatric radiology. For the assessment, first bone age of each epiphyseal plate is estimated using DCT/LDA, then the bone age of a patient is calculated by using the median of 9 estimations. For some patients, however, due to various reasons such as X-ray image quality or the pose of fingers, it is common to miss couple of plates in automated systems. In this paper, we investigate the relationship between the number of detected plates and the accuracy of bone age assessment. In the experimental results, we confirmed the similarity between bone age assessed using more than 7 epiphyseal plates and that assessed using 9 epiphyseal plates.

  • PDF

자동 뼈 연령 평가를 위한 비전 트랜스포머와 손 X 선 영상 분석 (Unleashing the Potential of Vision Transformer for Automated Bone Age Assessment in Hand X-rays)

  • 정경희;;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.687-688
    • /
    • 2023
  • Bone age assessment is a crucial task in pediatric radiology for assessing growth and development in children. In this paper, we explore the potential of Vision Transformer, a state-of-the-art deep learning model, for bone age assessment using X-ray images. We generate heatmap outputs using a pre-trained Vision Transformer model on a publicly available dataset of hand X-ray images and show that the model tends to focus on the overall hand and only the bone part of the image, indicating its potential for accurately identifying the regions of interest for bone age assessment without the need for pre-processing to remove background noise. We also suggest two methods for extracting the region of interest from the heatmap output. Our study suggests that Vision Transformer holds great potential for bone age assessment using X-ray images, as it can provide accurate and interpretable output that may assist radiologists in identifying potential abnormalities or areas of interest in the X-ray image.

골연령의 측정에서 Greulich-Pyle법, Tanner-Whitehouse법, 완관절 초음파 통과속도를 이용한 골연령 측정법의 비교 연구 (Measure of Bone Age through Greulich-Pyle Method, Tanner-Whitehouse Method and Ultrasound Transonic Velocity of Inferior Radiocarpal Joint)

  • 이동형;이진용;김덕곤
    • 대한한방소아과학회지
    • /
    • 제22권2호
    • /
    • pp.69-80
    • /
    • 2008
  • Objectives : The purpose of this study was to evaluate the correlation of 3 methods of bone age measurements. Methods : 102 children(49 boys, 53 girls) were involved in this study. We measured the height, weight and bone age based when they visited for the first time. We measured bone age using BoneAge of Sunlight Co.,Ltd. Two of the bone age measurement methods, Greulich-Pyle and Tanner-Whitehouse, were used to analyze the left dorsopalmar hand-wrist radiographs of 102 children who visited in Department of Pediatrics, O O University Oriental Hospital. This study was designed to investigate the correlation of the bone age between two methods. Results : The bone ages were related with age, height, weight and BMI according to this study(P<0.01). Each bone age assessment method had statistically significant correlation to each other(P<0.01). Conclusions : The ultrasound transonic velocity of inferior radiocarpal joint will become a sufficient diagnostic tool of bone age assessment if measurement error can be minimized by proper effort.

  • PDF

Clinical Validation of a Deep Learning-Based Hybrid (Greulich-Pyle and Modified Tanner-Whitehouse) Method for Bone Age Assessment

  • Kyu-Chong Lee;Kee-Hyoung Lee;Chang Ho Kang;Kyung-Sik Ahn;Lindsey Yoojin Chung;Jae-Joon Lee;Suk Joo Hong;Baek Hyun Kim;Euddeum Shim
    • Korean Journal of Radiology
    • /
    • 제22권12호
    • /
    • pp.2017-2025
    • /
    • 2021
  • Objective: To evaluate the accuracy and clinical efficacy of a hybrid Greulich-Pyle (GP) and modified Tanner-Whitehouse (TW) artificial intelligence (AI) model for bone age assessment. Materials and Methods: A deep learning-based model was trained on an open dataset of multiple ethnicities. A total of 102 hand radiographs (51 male and 51 female; mean age ± standard deviation = 10.95 ± 2.37 years) from a single institution were selected for external validation. Three human experts performed bone age assessments based on the GP atlas to develop a reference standard. Two study radiologists performed bone age assessments with and without AI model assistance in two separate sessions, for which the reading time was recorded. The performance of the AI software was assessed by comparing the mean absolute difference between the AI-calculated bone age and the reference standard. The reading time was compared between reading with and without AI using a paired t test. Furthermore, the reliability between the two study radiologists' bone age assessments was assessed using intraclass correlation coefficients (ICCs), and the results were compared between reading with and without AI. Results: The bone ages assessed by the experts and the AI model were not significantly different (11.39 ± 2.74 years and 11.35 ± 2.76 years, respectively, p = 0.31). The mean absolute difference was 0.39 years (95% confidence interval, 0.33-0.45 years) between the automated AI assessment and the reference standard. The mean reading time of the two study radiologists was reduced from 54.29 to 35.37 seconds with AI model assistance (p < 0.001). The ICC of the two study radiologists slightly increased with AI model assistance (from 0.945 to 0.990). Conclusion: The proposed AI model was accurate for assessing bone age. Furthermore, this model appeared to enhance the clinical efficacy by reducing the reading time and improving the inter-observer reliability.

Computerized bone age estimation system based on China-05 standard

  • Yin, Chuangao;Zhang, Miao;Wang, Chang;Lin, Huihui;Li, Gengwu;Zhu, Lichun;Fei, Weimin;Wang, Xiaoyu
    • Advances in nano research
    • /
    • 제12권2호
    • /
    • pp.197-212
    • /
    • 2022
  • The purpose of this study is to develop an automatic software system for bone age evaluation and to evaluate its accuracy in testing and feasibility in clinical practice. 20394 left-hand radiographs of healthy children (2-18 years old) were collected from China Skeletal Development Survey data of 1998 and China Skeletal Development Survey data of 2005. Three experienced radiologists and China-05 standard maker jointly evaluate the stages of bone development and the reference bone age was determined by consensus. 1020 from 20394 radiographs were picked randomly as test set and the remaining 19374 radiographs as training set and validation set. Accuracy of the automatic software system for bone age assessment is evaluated in test set and two clinical test sets. Compared with the reference standard, the automatic software system based on RUS-CHN for bone age assessment has a 0.04 years old mean difference, ±0.40 years old in 95% confidence interval by single reading, a 85.6% percentage agreement of ratings, a 93.7% bone age accuracy rate, 0.17 years old of MAD, 0.29 years old of RMS; Compared with the reference standard, the automatic software system based on TW3-C RUS has a 0.04 years old mean difference, a ±0.38 years old in 95% confidence interval by single reading, a 90.9% percentage agreement of ratings, a 93.2% bone age accuracy rate, a 0.16 years of MAD, and a 0.28 years of RMS. Automatic software system, AI-China-05 showed reliably accuracy in bone age estimation and steady determination in different clinical test sets.

Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels

  • Pyeong Hwa Kim;Hee Mang Yoon;Jeong Rye Kim;Jae-Yeon Hwang;Jin-Ho Choi;Jisun Hwang;Jaewon Lee;Jinkyeong Sung;Kyu-Hwan Jung;Byeonguk Bae;Ah Young Jung;Young Ah Cho;Woo Hyun Shim;Boram Bak;Jin Seong Lee
    • Korean Journal of Radiology
    • /
    • 제24권11호
    • /
    • pp.1151-1163
    • /
    • 2023
  • Objective: To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model. Materials and Methods: A convolutional neural network was trained to predict age according to the bone development shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 9 [7-12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343; median age [IQR], 10 [4-15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5-14] years; male: female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based age as the label (GP-based model). Results: Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age (88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2. Conclusion: The Korean model trained using the chronological ages of Korean children and adolescents without known bone development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in the Korean pediatric population. Further validation is required to confirm its accuracy.

Evaluation of the clinical efficacy of a TW3-based fully automated bone age assessment system using deep neural networks

  • Shin, Nan-Young;Lee, Byoung-Dai;Kang, Ju-Hee;Kim, Hye-Rin;Oh, Dong Hyo;Lee, Byung Il;Kim, Sung Hyun;Lee, Mu Sook;Heo, Min-Suk
    • Imaging Science in Dentistry
    • /
    • 제50권3호
    • /
    • pp.237-243
    • /
    • 2020
  • Purpose: The aim of this study was to evaluate the clinical efficacy of a Tanner-Whitehouse 3 (TW3)-based fully automated bone age assessment system on hand-wrist radiographs of Korean children and adolescents. Materials and Methods: Hand-wrist radiographs of 80 subjects (40 boys and 40 girls, 7-15 years of age) were collected. The clinical efficacy was evaluated by comparing the bone ages that were determined using the system with those from the reference standard produced by 2 oral and maxillofacial radiologists. Comparisons were conducted using the paired t-test and simple regression analysis. Results: The bone ages estimated with this bone age assessment system were not significantly different from those obtained with the reference standard (P>0.05) and satisfied the equivalence criterion of 0.6 years within the 95% confidence interval (-0.07 to 0.22), demonstrating excellent performance of the system. Similarly, in the comparisons of gender subgroups, no significant difference in bone age between the values produced by the system and the reference standard was observed (P>0.05 for both boys and girls). The determination coefficients obtained via regression analysis were 0.962, 0.945, and 0.952 for boys, girls, and overall, respectively (P=0.000); hence, the radiologist-determined bone ages and the system-determined bone ages were strongly correlated. Conclusion: This TW3-based system can be effectively used for bone age assessment based on hand-wrist radiographs of Korean children and adolescents.

Factors associated with Advanced Bone Age in Overweight and Obese Children

  • Oh, Min-Su;Kim, Sorina;Lee, Juyeon;Lee, Mu Sook;Kim, Yoon-Joo;Kang, Ki-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제23권1호
    • /
    • pp.89-97
    • /
    • 2020
  • Purpose: Obese children may often present with advanced bone age. We aimed to evaluate the correlation between factors associated with childhood obesity and advanced bone age. Methods: We enrolled 232 overweight or obese children. Anthropometric and laboratory data, and the degree of nonalcoholic fatty liver disease (NAFLD) were measured. We analyzed factors associated with advanced bone age by measuring the differences between bone and chronological ages. Results: The normal and advanced bone age groups were comprised of 183 (78.9%) and 49 (21.1%) children, respectively. The prevalence of advanced bone age significantly increased as the percentiles of height, weight, waist circumference, and body mass index (BMI) increased. BMI z-score was higher in the advanced bone age group than in the normal bone age group (2.43±0.52 vs. 2.10±0.46; p<0.001). The levels of insulin (27.80±26.13 μU/mL vs. 18.65±12.33 μU/mL; p=0.034) and homeostatic model assessment-insulin resistance (6.56±6.18 vs. 4.43±2.93; p=0.037) were significantly higher, while high density lipoprotein-cholesterol levels were lower (43.88±9.98 mg/dL vs. 48.95±10.50 mg/dL; p=0.005) in the advanced bone age group compared to those in the normal bone age group, respectively. The prevalence of advanced bone age was higher in obese children with metabolic syndrome than in those without (28.2% vs. 14.7%; p=0.016). The prevalence of advanced bone age was higher in obese children with a more severe degree of NAFLD. Conclusion: Advanced bone age is associated with a severe degree of obesity and its complications.