References
- Benjavongkulchai S, Pittayapat P. Age estimation methods using hand and wrist radiographs in a group of contemporary Thais. Forensic Sci Int 2018; 287: 218.e1-8. https://doi.org/10.1016/j.forsciint.2018.03.045
- Spampinato C, Palazzo S, Giordano D, Aldinucci M, Leonardi R. Deep learning for automated skeletal bone age assessment in X-ray images. Med Image Anal 2017; 36: 41-51. https://doi.org/10.1016/j.media.2016.10.010
- Gilsanz V, Ratib O. Hand bone age: A digital atlas of skeletal maturity. Berlin: Springer; 2005.
- Tanner JM, Healy MJR, Cameron N, Goldstein H. Assessment of skeletal maturity and prediction of adult height (TW3 method). Philadelphia: W. B. Saunders; 2001.
- Fishman LS. Radiographic evaluation of skeletal maturation. A clinically oriented method based on hand-wrist films. Angle Orthod 1982; 52: 88-112.
- Tristan-Vega A, Arribas JI. A radius and ulna TW3 bone age assessment. IEEE Trans Biomed Eng 2008; 55: 1463-76. https://doi.org/10.1109/TBME.2008.918554
- Thodberg HH, Kreiborg S, Juul A, Pedersen KD. The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 2009; 28: 52-66. https://doi.org/10.1109/TMI.2008.926067
- Liu J, Qi J, Liu Z, Ning Q, Luo X. Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method. Comput Med Imaging Graph 2008; 32: 678-84. https://doi.org/10.1016/j.compmedimag.2008.08.005
- Gulshan, V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016; 316: 2402-10. https://doi.org/10.1001/jama.2016.17216
- Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542: 115-8. https://doi.org/10.1038/nature21056
- Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 2019; 25: 954-61. https://doi.org/10.1038/s41591-019-0447-x
- McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature 2020; 577: 89-94. https://doi.org/10.1038/s41586-019-1799-6
- Lee H, Tajmir S, Lee J, Zissen M, Yeshiwas BA, Alkasab TK, et al. Fully automated deep learning system for bone age assessment. J Digit Imaging 2017; 30: 427-41. https://doi.org/10.1007/s10278-017-9955-8
- Kim JR, Shim WH, Yoon HM, Hong SH, Lee JS, Cho YA, et al. Computerized bone age estimation using deep learning based program: evaluation of the accuracy and efficiency. AJR Am J Roentgenol 2017; 209: 1374-80. https://doi.org/10.2214/AJR.17.18224
- Ren X, Li T, Yang X, Wang S, Ahmad S, Xiang L, et al. Regression convolutional neural network for automated pediatric bone age assessment from hand radiograph. IEEE J Biomed Health Inform 2019; 23: 2030-8. https://doi.org/10.1109/JBHI.2018.2876916
- Son SJ, Song Y, Kim N, Do Y, Kwak N, Lee MS, et al. TW3-based fully automated bone age assessment system using deep neural networks. IEEE Access 2019; 7: 33346-58. https://doi.org/10.1109/ACCESS.2019.2903131
- Iglovikov VI, Rakhlin A, Kalinin AA, Shvets AA. Paediatric bone age assessment using deep convolutional neural networks. In: Stoyanov D, Taylor Z, Carneiro G, Syeda-Mahmood T, Martel A, Maier-Hein L, et al. Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer; 2018. p. 300-8.