• Title/Summary/Keyword: Bonding Interfaces

Search Result 113, Processing Time 0.026 seconds

Cap Formation Process for MEMS Packages using Cu/Sn Rim Bonding (Cu/Sn Rim 본딩을 이용한 MEMS 패키지의 Cap 형성공정)

  • Kim, S.K.;Oh, T.S.;Moon, J.T.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.31-39
    • /
    • 2008
  • To develop the MEMS cap bonding process without cavity formation, we electroplated Cu/Sn rim structures and measured the bonding characteristics for the Cu/Sn rims of $25{\sim}400{\mu}m$ width. As the effective device-mounting area ratio decreased and the failure strength ratio increased for wider Cu/Sn rim, these two properties were estimated to be optimized for the Cu/Sn rim with 150 ${\mu}m$ width. Complete bonding was accomplished at the whole interfaces of the Cu/Sn packages with the rim widths of 25 ${\mu}m$ and 50 ${\mu}m$. However, voids were observed locally at the interfaces with the rim widths larger than 100 ${\mu}m$. Such voids were formed by local non-contact between the upper and lower rims due to the surface roughness of the electroplated Sn.

  • PDF

A Comparative Study of Aggregation Schemes for Concurrent Transmission over Multiple WLAN Interfaces (다중 무선랜 인터페이스 전송을 위한 결합 방식의 성능 연구)

  • Saputra, Yuris Mulya;Hwang, Hwanwoong;Yun, Ji-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.18-25
    • /
    • 2014
  • To increase wireless capacity, the concurrent use of multiple wireless interfaces on different frequency bands, called aggregation, can be considered. In this paper, we focus on aggregation of multiple Wi-Fi interfaces with packet-level traffic spreading between the interfaces. Two aggregation schemes, link bonding and multipath TCP (MPTCP), are tested and compared in a dualband Wi-Fi radio system with their Linux implementation. Various test conditions such as traffic types, network delay, locations, interface failures and configuration parameters are considered. Experimental results show that aggregation increases throughput performance significantly over the use of a single interface. Link bonding achieves lower throughput than MPTCP due to duplicate TCP acknowledgements (ACKs) resulting from packet reordering and filtering such duplicate ACKs out is considered as a possible solution. However, link bonding is fast responsive to links' status changes such as a link failure. It is shown that different combinations of interface weights for packet spread in link bonding result in different throughput performance, envisioning a spatio-temporal adaptation of the weights. We also develop a mathematical model of power consumption and compare the power efficiency of the schemes applying different power consumption profiles.

Design and Experimental Results for Cooling Tubes of Ultrasonic Bonding Equipment of Ultrasonic Bonding Equipment (초음파 접합 장치의 냉각관 설계 및 접합강도 실험)

  • Lee, DongWook;Jeon, EuySick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1879-1884
    • /
    • 2014
  • Recently, the micro bonding technology comes into the spotlight as the miniaturization of the electronic product. The micro bonding technique can classify by way of laser welding and ultrasonic bonding and etc. However, the research on the micro bonding is much lacks. In this paper, carried out the cooling analysis of the 60 [kHz] ultrasonic bonding equipment to know heat effect of the piezoelectric element when the ultrasonic bonding equipment was operated. The ultrasonic horn having the natural frequency with 60 [kHz] for the dissimilar material bonding of the glass and solder tried to be designed. The parameters and response was set through the basic experiment. The dissimilar material bonding strength analysis using the 60 [kHz] ultrasonic bonding equipment was done. We carried out the bonding for improving bonding strength to using the silver paste. air thightness of bonding surface was confirmed by analysis of bonding interfaces.

Improvement of Paper Bulk and Stiffness by Using Drying Shrinkage Analysis (건조수축 해석을 통한 종이의 벌크 및 강직성 향상)

  • Lee, Jin-Ho;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.4
    • /
    • pp.49-58
    • /
    • 2011
  • The maximum drying shrinkage velocity was proposed to verify bulk and stiffness improvement mechanism during drying according to papermaking parameters. It was based on the wet-web shrinkage behavior without the restraint of wet-web during drying, so intact drying impact could be measured. Bulking agent reduced the drying shrinkage and the maximum drying shrinkage velocity, so paper bulk increased and paper strength decreased. When adding cationic starch to stock with the bulking agent for strengthening, the bulk was increased further with additional decreasing of the drying shrinkage and the maximum drying shrinkage velocity. Paper strength also increased except tensile stiffness index with decreasing the drying shrinkage and the maximum drying shrinkage velocity. When using additional strength additives for strengthening of fiber interfaces extended by bulking agent and cationic starch, amphoteric strength additive increased paper stiffness without loss of paper bulk. It was considered that the added amphoteric strength additives were cross-linked to the stretched cationic starch and this cross-linking increased elasticity of fiber-polymer-fiber interfaces without changing the drying behavior. Paper bulk could be increased with decreasing the maximum drying shrinkage velocity. The drying shrinkage of paper also could be controlled by fiber-to-fiber bonding interfaces by the bulking agent. In this case, paper strength including stiffness was decreased by reducing fiber-to-fiber bonding but it could be improved by strengthening fiber-to-fiber interfaces with polymer complex without loss of bulk.

Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds (접합 공정 조건이 Al-Al 접합의 계면접착에너지에 미치는 영향)

  • Kim, Jae-Won;Jeong, Myeong-Hyeok;Jang, Eun-Jung;Park, Sung-Cheol;Cakmak, Erkan;Kim, Bi-Oh;Matthias, Thorsten;Kim, Sung-Dong;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.20 no.6
    • /
    • pp.319-325
    • /
    • 2010
  • 3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and $6.44\;J/m^2$ for 400, 450, and $500^{\circ}C$, respectively, in a $N_2$ atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.

Anodic bonding characteristics of MCA to Si-wafer using pyrex #7740 glass intermediatelayer for MEMS applications (파일렉스 #7740 글라스 매개층을 이용한 MEMS용 MCA와 Si기판의 양극접합 특성)

  • Ahn, Jung-Hac;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.374-375
    • /
    • 2006
  • This paper describes anodic bonding characteristics of MCA to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with the same properties were deposited on MCA under optimum RF sputter conditions (Ar 100 %, input power $1\;W/cm^2$). After annealing at $450^{\circ}C$ for 1 hr, the anodic bonding of MCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in $110^{-6}$ Torr vacuum condition. Then, the MCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation and simulation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity being 0.05-0.08 %FS. Moreover, any damages or separation of MCNSi bonded interfaces did not occur during actuation test. Therefore, it is expected that anodic bonding technology of MCNSi-wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

Active Metal Brazing Applied to Joining of ZrO2-Ti Alloy (ZrO2-Ti합금의 활성금속 브레이징)

  • Kee, Se-Ho;Park, Sang-Yoon;Jung, Jae-Pil;Kim, Won-Joong
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.38-43
    • /
    • 2012
  • In this study, active metal brazing methods for $ZrO_2$ and Ti alloy were discussed. To get a successful metal-ceramic bonding, various factors (melting temperature, corrosion, sag resistance, thermal expansion coefficient etc. of base materilas and filler metal) should be considered. Moreover, in order to clarify bonding between the metal and ceramic, the mechanism of the interfacial structure of the joints should be identified. The driving force for the formation of metal and ceramic interfaces is the reduction of the free energy which occurs when their contact becomes complete. Interfacial bonding depends on the material combinations and the bonding processes. This study describes the bonding between ceramic and metal in an active metal brazing.

Bonding Properties of Epoxy-Concrete Interface in RC Beams Strengthened by Steel Plate (강판으로 보강된 RC보의 에폭시-콘크리트 계면의 부착특성)

  • 박윤제;신동혁;이광명;신현목
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.221-227
    • /
    • 2001
  • Both strength and stiffness of RC structures strengthened by a steel plate greatly increase and however, their ductility might not be sufficient because premature failures usually occur at the adhesive-concrete interface. In this study, Mohr-Coulomb criterion was adopted to examine the bonding failure mechanism, and the diagonal shear bonding test, the direct shear bonding test, and the flexural test on RC beams strengthened by a steel plate were carried out to measure the bonding properties. It is found from the experimental and numerical results that the cohesive strengths of epoxy-concrete interfaces are ranging from 50 kgf/㎠ to 70 kgf/㎠ when the friction angle is 45°. Bonding failure loads can be predicted by applying the bonding properties to the structural analysis of RC beams strengthened by steel plate. By considering them in the design of strengthened beams, the premature failure would be effectively prevented.

Mechanical Characteristics of MLCA Anodic Bonded on Si wafers (실리콘기판위에 양극접합된 MLCA의 기계적 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.160-163
    • /
    • 2003
  • This paper describes on anodic bonding characteristics of MLCA(Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100 %, input power $1\;/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-008 %FS. Moreover, any damages or separation of MICA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MICA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling

  • Tahar, Hassaine Daouadji;Tayeb, Bensatallah;Abderezak, Rabahi;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.319-332
    • /
    • 2021
  • The wood-concrete composite is an interesting solution in the field of Civil Engineering to create high performance bending elements for bridges, as well as in the building construction for the design of wood concrete floor systems. The authors of this paper has been working for the past few years on the development of the bonding process as applied to wood-concrete composite structures. Contrary to conventional joining connectors, this assembling technique does ensure an almost perfect connection between wood and concrete. This paper presents a careful theoretical investigation into interfacial stresses at the level of the two interfaces in composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate under a uniformly distributed load. The model is based on equilibrium and deformations compatibility requirements in all parts of the strengthened composite beam, i.e., the wooden beam, RC slab, the CFRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the CFRP- wooden-concrete hybrid structures.