• Title/Summary/Keyword: Bond strengths

Search Result 481, Processing Time 0.023 seconds

Bond Strength Characteristics Between Aggregate and Mortar (골재-모르타르 경계면의 부착강도 특성)

  • 박연동;양주경;임희철;김진근;장정수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.129-134
    • /
    • 1991
  • The effects of water-cement ratio, age, and admixture such as fly ash, silica fume on the bond strength between aggregate and mortar were investigated. As the result, with increasing of water-cement ratio, the bond strength was slightly decreased while the compressive strengths of mortar and concrete were seriously decreased. The rate of strength gain of bond strength was not decreased with increasing of water-cement ratio while that of compressive strength was gradually decreased.

  • PDF

COMPARISON OF SHEAR BOND STRENGTHS OF FOUR DENTINAL ADHESIVES (네가지 상아질 접착제의 전단 결합 강도 비교)

  • Cho, Kyeong-Mee;Hur, Bock;Lee, Hee-Joo
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.280-288
    • /
    • 1996
  • The purpose of this study was to assess comparatively the shear bond strength on dentin of four dentin bonding agents used in conjunction with light-curing composite resins. Clearfil New Bond, Scotchbond Multipurpose Dentin Adhesive, All-Bond 2 and X-R Bond were applicated on labial dentin surfaces just below dentin - enamel juction of bovine incisor teeth. After shear bond strength testing with the universal testing machine, the bonding interface of the specimens were observed under light stereomicroscope. Following results were obtained. 1. The shear bond strength was high in the order of B,C,D,A and group B Scotchbond Multipurpose Dentine Adhesive revealed greater bond strength than Clearfil New Bond and X-R Bond. (p<.001) 2. When using ANOVA and Duncan's multiple range test, there were statistical differences among the four groups, except between group Band C,group D and A. 3. There was no relationship between mode of failure and shear bond strength.

  • PDF

COMPARISON OF RETENTIVE FORCES OF TEMPORARY CEMENTS AND ABUTMENT HEIGHT USED WITH IMPLANT-SUPPORTED PROSTHESES

  • Lee, Dong-Hee;Suh, Kyu-Won;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • STATEMENT OF THE PROBLEM: Recent data regarding the effects the cement type and abutment heights on the retentive force of a prosthetic crown are inconsistent and unable to suggest clinical guidelines. PURPOSE OF THE STUDY: This study evaluated the effects of different types of temporary cements and abutment heights on the retentive strength of cement-retained implant-supported prostheses. MATERIALS AND METHODS: Prefabricated implant abutments, 4 mm in diameter, $8^{\circ}$taper per side, and light chamfer margins, were used. The abutment heights of the implants were 4 mm, 5.5 mm and 7 mm. Seven specimens of a single crown similar to a first premolar were fabricated. Six commercially available temporary cements, TempBond, TempBond NE, Cavitec, Procem, Dycal, and IRM, were used in this study. Twenty-four hours after cementation, the retentive strengths were measured using a universal testing machine with a crosshead speed of 0.5 mm/min. The cementation procedures were repeated 3 times. The data was analyzed using two-way analysis of variance and a Tukey test (${\alpha}$=0.05). RESULTS: The tensile bond strength ranged from 1.76 kg to 19.98 kg. The lowest tensile strengths were similar in the TempBond and Cavitec agents. Dycal showed the highest tensile bond strength (P<0.01). More force was required to remove the crowns cemented to the long abutments (P<0.05). CONCLUSION: TempBond and Cavitec agents showed the lowest mean tensile bond strength. The Dycal agent showed more than double the tensile bond strength of the TempBond agent.

Shear bond strength of veneering ceramic to coping materials with different pre-surface treatments

  • Tarib, Natasya Ahmad;Anuar, Norsamihah;Ahmad, Marlynda
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.339-344
    • /
    • 2016
  • PURPOSE. Pre-surface treatments of coping materials have been recommended to enhance the bonding to the veneering ceramic. Little is known on the effect on shear bond strength, particularly with new coping material. The aim of this study was to investigate the shear bond strength of veneering ceramic to three coping materials: i) metal alloy (MA), ii) zirconia oxide (ZO), and iii) lithium disilicate (LD) after various pre-surface treatments. MATERIALS AND METHODS. Thirty-two (n = 32) discs were prepared for each coping material. Four pre-surface treatments were prepared for each sub-group (n = 8); a) no treatment or control (C), b) sandblast (SB), c) acid etch (AE), and d) sandblast and acid etch (SBAE). Veneering ceramics were applied to all discs. Shear bond strength was measured with a universal testing machine. Data were analyzed with two-way ANOVA and Tukey's multiple comparisons tests. RESULTS. Mean shear bond strengths were obtained for MA ($19.00{\pm}6.39MPa$), ZO ($24.45{\pm}5.14MPa$) and LD ($13.62{\pm}5.12MPa$). There were statistically significant differences in types of coping material and various pre-surface treatments (P<.05). There was a significant correlation between coping materials and pre-surface treatment to the shear bond strength (P<.05). CONCLUSION. Shear bond strength of veneering ceramic to zirconia oxide was higher than metal alloy and lithium disilicate. The highest shear bond strengths were obtained in sandblast and acid etch treatment for zirconia oxide and lithium disilicate groups, and in acid etch treatment for metal alloy group.

BOND STRENGTH BETWEEN COBALT-CHROMIUM ALLOY AND DENTURE BASE RESIN ACCORDING TO ADHESIVE PRIMERS (금속표면처리제에 따른 코발트-크롬 합금과 의치상용 레진의 결합강도)

  • Park, Jong-Il;Kwon, Ju-Hong;Lee, Hae-Hyeung;Cho, Hay-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2000
  • This study evaluated the effects of four adhesive metal primers on the shear bond strength of a heat curing denture base resin(Lucitone 199) to cobalt-chromium alloy(Biosil-f). The adhesive metal primers were Cesead Opaque Primer, Metal Primer, MR Bond, and Super-Bond liquid. The metal surface primed or nonprimed was filled with the heat-curing methyl methacrylate resin. The specimens were stored in water at $37^{\circ}C$ for 24 hours and the alternately immersed in water bath at $5^{\circ}C\;and\;55^{\circ}C$ for up to 2,000 thermal cycles. Shear bond strengths were measured using UTM at a crosshead speed of 0.5mm/min. Failure surface were examined under magnifying glasses. All the primers examined improved the shear bond strength between denture base resin and cobalt-chromium alloy compared with nonprimed specimens before thermal cycling. The bond strength of Cesead Opaque Primer was greatest. And after 2,000 thermal cycles, the bond strengths between resin and cobalt-chromium alloy were decreased but the difference between thermal cycling 0 and 2,000 at Cesead Opaque primer and Metal Primer were not significant. This study indicated that Cesead Opaque Primer & Metal Primer is effective primers to obtain higher bond strength between heat cured denture base resin and cobalt-chromium alloy.

  • PDF

The effect of dentin desensitizers and Nd:YAG laser pre-treatment on microtensile bond strength of self-adhesive resin cement to dentin

  • Acar, Ozlem;Tuncer, Duygu;Yuzugullu, Bulem;Celik, Cigdem
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.88-95
    • /
    • 2014
  • PURPOSE. The purpose of this study is to evaluate if pre-treatment with desensitizers have a negative effect on microtensile bond strength before cementing a restoration using recently introduced self-adhesive resin cement to dentin. MATERIALS AND METHODS. Thirty-five human molars' occlusal surfaces were ground to expose dentin; and were randomly grouped as (n=5); 1) Gluma-(Glutaraldehyde/HEMA) 2) Aqua-Prep F-(Fluoride), 3) Bisblock-(Oxalate), 4) Cervitec Plus-(Clorhexidine), 5) Smart protect-(Triclosan), 6) Nd:YAG laser, 7) No treatment (control). After applying the selected agent, RelyX U200 self-adhesive resin cement was used to bond composite resin blocks to dentin. All groups were subjected to thermocycling for 1000 cycles between $5-55^{\circ}C$. Each bonded specimen was sectioned to microbars ($6mm{\times}1mm{\times}1mm$) (n=20). Specimens were submitted to microtensile bond strength test at a crosshead speed of 0.5 mm/min. Kolmogorov-Smirnov, Levene's test, Kruskal-Wallis One-way Analysis of Variance, and Conover's nonparametric statistical analysis were used (P<.05). RESULTS. Gluma, Smart Protect and Nd:YAG laser treatments showed comparable microtensile bond strengths compared with the control group (P>.05). The microtensile bond strengths of Aqua-Prep F, and Cervitec Plus were similar to each other but significantly lower than the control group (P<.05). Bisblock showed the lowest microtensile bond strength among all groups (P<.001). Most groups showed adhesive failure. CONCLUSION. Within the limitation of this study, it is not recommended to use Aqua-prep F, Cervitec Plus and Bisblock on dentin when used with a self-adhesive resin cement due to the decrease they cause in bond strength. Beside, pre-treatment of dentin with Gluma, Smart protect, and Nd:YAG laser do not have a negative effect.

The Effect of Resin Base Surface Treatment on Shear Bond Strength in Indirect Bracket Bonding Technique (브라켓 간접부착술식시 레진베이스의 표면처리가 전단결합강도에 미치는 영향)

  • Yim, Byeong-Cheol;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.28 no.5 s.70
    • /
    • pp.681-688
    • /
    • 1998
  • The purpose of this study was to evaluate the effects of the surface treatments of resin bases in indirect bracket bonding technique by study of shear bond strengths and failure patterns. Ninety metal brackets were bonded to the stone models of specimens involving bovine lower incisor with light-cured adhesive(Light-Bond). After removal of brackets with the resin base from the stone models, the surfaces of resin bases in thirty brackets were treated with Plastic Conditioner and the surfaces of resin bases in another thirty brackets were treated with sandblaster and the remaining thirty brackets were served as controls. All brackets were transferred to the specimens and bonded using sealant. The shear bond strength was tested on universal testing machine, and failure pattern was assessed with the adhesive remnant index(ARI). The results were as follows: 1. Surface treatments of resin bases with Plastic Conditioner or sandblasting showed statistically higher shear bond strengths than no treatment group. 2. No significant difference in shear bond strength was found between Plastic Conditioner treatment and sandblasting treatment groups. 3. No significant difference in ARI scores was found among the three groups. 4. As the result of correlation analysis between shear bond strengths and hnl scores, failure at adhesive/bracket base interface tends to increase when the shear bond strength was high, but it was not significant statistically. The above results suggest that improvement of bond strength can be obtained by surface treatment of resin base in the indirect bonding technique.

  • PDF

SHEAR BOND STREGNTHS OF ONE-BOTTLE DENTIN ABHESIVE SYSTEMS (One-Bottle system 상아질접착제의 전단결합강도 해석)

  • Cho, Byeong-Hoon;Lim, Sung-Sam;Kwon, Hyuck-Choon;Um, Chung-Moon;Son, Ho-Hyun;Bae, Kwang-Sik
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.546-553
    • /
    • 1999
  • In Older to evaluate the effectiveness of 'One-bottle dentin adhesive system', the shear bond strengths of two fourth generation dentin adhesive systems and two One-bottle systems to the occlusal dentin of the freshly extracted third molars were measured by the regulation of the ISO TR 11405. The fourth generation dentin adhesive systems used in this study were Scotchbond Multi-Purpose Plus and All-Bond 2, and the One-bottle systems were Single Bond and One-Step. The effects of the thickness of hybrid layer and adhesive layer, the diameter of resin tag and the ratio between the diameter of resin tag and that of dentinal tubule were analyzed as the contributing factors of the shear bond strength of dentin bonding systems from the Scanning Electron Microscopic images. The results were as follows: 1. The shear bond strengths of Scotchbond Multi-Purpose, All-Bond 2, and Single Bond were 16.98${\pm}$3.40 MPa, 15.10${\pm}$2.77 MPa and 15.05${\pm}$3.18 MPa, respectively. There were no statistical differences(p>0.05). 2. But, the shear bond strength of One-Step were significantly lower than those of the other groups (11.81${\pm}$1.95 MPa, p<0.05). 3. The thicknesses of hybrid layer and adhesive layer of One-Step were significantly thinner than those of the other groups(p<0.05). The differences of the diameter of resin tag(p=0.0685) and the ratio between the diameter of resin tag and that of dentinal tubule(p=0.2401) were not significant among all the material groups. 4. The thickness of hybrid layer and adhesive layer might be considered as contributing factors of the she at bond strengths of dentin bonding systems, but the diameter of resin tag and the ratio between the diameter of resin tag and that of dentinal tubule might not.

  • PDF

TENSILE STRENGTHS OF PRE-LIGATURED BUTTON WITH SEVERAL TYPES OF CONTAMINATION IN DIRECT BONDING PROCEDURE WHICH CAN HAPPEN DURING THE SURGICAL EXPOSURE OF UNERUPTED TEETH (치아의 견인을 위한 버튼 접착시 오염이 인장강동에 미치는 영향)

  • Kim, Seong-Oh;Choi, Byung-Jai;Lee, Jae-Ho;Sohn, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.400-420
    • /
    • 1998
  • We already know that it is very difficult to obtain an "isolated field" for direct bonding during the surgical exposure of unerupted teeth. The aim of this in-vitro study is to simulate the clinical situation of forced eruption and to evaluate the tensile strengths of preligatured button with several types of contamination which can happen during the surgical exposure of unerupted teeth. Four orthodontic direct bonding systems were used. ($Ortho-One^{TM}$, $Rely-a-Bond^{(R)}$, $Ortho-Two^{TM}$, Phase $II^{(R)}$) Each material was divided into four groups(n=20) : Group 1. (Control, no contamination), Group 2. (Rinse etching agent with saline instead of water), Group 3. (Blood contamination of etched surface for 30 seconds), Group 4. (Blood contamination of primed surface for 30 seconds) 320 bovine anterior permanent teeth were divided into the above mentioned 16 groups. Enamel surface was flattened and ground under water coolant. Pre-ligatured buttons were prepared to the same form. (Cut 0.25 ligature wire 10 cm in length. Twist the ligature wire 30 times clockwise. Mark the wire 15mm and 35mm points from button. Make a loop sticking two points together and twist the loop 6 times counterclockwise.) The bonded specimens were stored at $37^{\circ}C$ saline solution for 3 days. Then the tensile strength of each sample was measured with Instron universal testing machine, crosshead speed of 0.5mm/min. The following results were obtained: 1. As compared to control groups (Group 1) of each material, Rely-a-Bond had a significantly lower mean tensile strengths than other material. (p<0.01) 2. In Group 2. of Ortho-One and Rely-a-Bond, the mean tensile strengths decreased about 7.7% and 11.1%, respectively with statistical significances. (p<0.05) 3. In Group 2. of Ortho-Two and Phase II, the mean tensile strengths did not decrease. 4. In Group 3. of Ortho-One, Rely-a-Bond, Ortho-Two, and Phase II, the mean tensile strengths decreased about 60.8%, 56.1%, 60.2%, and 46.0%, respectively with statistical significances. (p<0.01) 5. In Group 4. of Ortho-One and Rely-a-Bond, the mean tensile strengths did not decrease. 6. In Group 4. of Ortho-Two and Phase II, the mean tensile strengths were decreased about 20.95% and 22.28%, respectively with statistical significances. (p<0.01) There were formations of a hump shaped mass from bonding resin under blood contamination which disturbed direct bonding procedure. According to Reynolds, the proper bond strength for clinical manipulation should be at least 45N or about 4.5Kg.F. According to these results, it can be concluded that Ortho-One could be used during surgical exposure of unerupted teeth. In any case, blood contamination of the etched surface should be avoided, but the blood contamination of primed surface of Ortho-One may not decrease bond strength. Just 'blowing-out' is enough to remove blood from primed surface of Ortho-One. You can verify the clean surface of the primer of Ortho-One after blowing out the blood contamination.

  • PDF

Experimental Evaluation on Bond Strengths of Reinforcing Bar in Coils with Improved Machinability during Straightening Process (직선화 가공성을 고려한 코일철근의 실험적 부착강도 평가)

  • Chun, Sung-Chul;Choi, Oan-Chul;Jin, Jong-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2013
  • A new deformation of reinforcing bar in coils was proposed to improve a machinability of straightening process, which has crescent-shaped transverse ribs with an inclination angle of 50 degrees, a crest width of $0.15d_b$, and a flank inclination of 55 degrees. The proposed deformation can increase contact area between a surface of re-bar and a groove of a roller during a straightening process and, therefore, it might reduce a damage of ribs, improve a final straightness, and enhance an efficiency of the straightening process. Splice tests were conducted to evaluate bond strengths of three types of re-bar in coils including the proposed re-bar, of which the inclination angles of transverse ribs were 50, 60, and 90 degrees, respectively. Test results show that the re-bars in coils have higher bond strengths than predicted strengths by equations of Orangun et al., ACI 408, and KCI by at least 10%. Correlation coefficients of bond strengths between a straight bar and re-bars in coils are 0.94 and more. Consequently, equations of the KCI code for determining development and splice lengths can be applied to the tested re-bars in coils.