• Title/Summary/Keyword: Bond rupture

Search Result 53, Processing Time 0.026 seconds

Bonding Characteristics of Basalt Fiber Sheet as Strengthening Material for Railway Concrete Structures (Basalt 섬유쉬트의 철도시설 콘크리트구조물 보강재로서의 부착거동 연구)

  • Park, Cheol-Woo;Sim, Jong-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.641-648
    • /
    • 2009
  • Concrete structures become more common in railway systems with an advancement of high speed train technologies. As the service life of concrete structures increases, structural strengthening for concrete structures may be necessary. There are several typical strengthening techniques using steel plate and fiber reinforced polymer (FRP) materials, which have their own inherent shortcomings. In order to enhance greater durability and resistance to fire and other environmental attacks, basalt fiber material attracts engineer's attention due to its characteristics. This study investigates bonding performance of basalt fiber sheet as a structural strengthening material. Experimental variables include bond width, length and number of layer. From the bonding tests, there were three different types of bonding failure modes: debonding, rupture and rip-off. Among the variables, bond width indicated more significant effect on bonding characteristics. In addition the bond length did not contribute to bond strength in proportion to the bond length. Hence this study evaluated effective bond length and effective bond strength. The effective bond strength was compared to those suggested by other researches which used different types of FRP strengthening materials such as carbon FRP.

Effect of Combining Wood Particles and Plastic(Polypropylene) Screen on the Physical and Mechanical Properties of Board (목재(木材)파이티클과 플라스틱(폴리프로필렌) 망(網)의 결체(結締) 보오드의 물리(物理) 및 기술적(機械的) 성질(性質)에 미치는 영향(影響))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.21-44
    • /
    • 1988
  • As a way for the effective utilization of pallman chips and sawdusts, these furnish materials were combined with non-woody material of plastic (polypropylene) screen in board manufacturing to improve their weak physical and mechanical properties. The conventional boards were made with conditions of specific gravity 0.40, 0.55, 0.70, and 0.85, resin content 8, 10, 12 and 14%, and number of polypropylene screen 1, 2, 3 and 4, and press-lam boards were also manufactured. The physical and mechanical properties were measured and discussed on thickness swelling, bending modulus of rupture and elasticity, tensile strength, internal bond strength, and screw holding strength. The results obtained at this study were summarized as follows: 1. In thinckness swelling both of pallman chip board and sawdust board were improved by the increase of resin content, and press-lam boards showed lower thickness swelling than conventional boards. 2. Both the modulus of rupture and elasticity were increased with the increase of specific gravity, and press-lam boards showed higher modulus of rupture and elasticity than conventional boards. On the other hand, modulus of rupture was increased with the increase of number of polypropylene screen and resin content whereas these effects in modulus of elasticity was not recognized. 3. Tensile strength was increased with the increase of specific gravity, and the boards combined with polypropylene screen showed higher tensile strength than control boards. Also tensile strength was increased with the increase of number of polypropylene screen, and press-lam boards revealed higher tensile strength than conventional boards. 4. Internal bond strength was increased with the increase of specific gravity, and the boards combined with polypropylene screen were lower in internal bond strength than control boards. Also, the boards combined with odd number of polypropylene screen showed lower internal bond strength than those combined with even number of polypropylene screen. 5. Screw holding strength was increased with the increase of resin content and specific gravity but significant difference was not approved between boards combined with polypropylene screen and control boards. In press-lam boards, pallman chip boards of higher specific gravity but sawdust boards of lower specific gravity showed better screw holding strength than control boards.

  • PDF

Strengthening Effect of Reinforced Concrete Beams Strengthened with NSM CFRP Reinforcements and Various Reinforcement Details (다양한 보강상세를 갖는 CFRP로 표면매립 보강된 철근콘크리트 보의 보강효과)

  • Jung, Woo-Tai;Park, Young-Hwan;Park, Jong-Sup;Kim, Chul-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.781-790
    • /
    • 2011
  • This paper contains the experimental results on strengthening effect of RC beams strengthened with NSM CFRP reinforcement and various strengthening details. A total of 14 beams have been tested to analyze strengthening effects of NSMR with various reinforcement details. Variables were cross-sectional shape of CFRP reinforcements, strengthening areas, grooves the number and location etc. Test results revealed that failure modes of NSMR showed two types. One was bond failure at interface between concrete and filler and the other was CFRP rupture. Also, failure mode of specimens with two grooves occurred premature bond failure because of superposition of failure surfaces at concrete around grooves. failure mode of MI specimens considered the equivalent section have changed bond failure to CFRP rupture and CFRP efficiency has improved 83% to 100%.

Fabrication Process and Mechanical Properties of Co-based Metal Bond in Diamond Impregnated Tools (다이아몬드 공구용 코발트계 합금 결합제의 제조 및 기계적 성질)

  • Lee, Gi-Seon;Jeong, Seung-Bu
    • Korean Journal of Materials Research
    • /
    • v.10 no.8
    • /
    • pp.532-539
    • /
    • 2000
  • Co-0.5C-(15~20)Cr-20Ni-8W-(2~7)Fe alloy bond in diamond-impregnated abrasive tool was synthesized by ball-milling and mechanical alloying process. When the powders were mechanical alloyed for 6h, micro-welding in most metal powders was observed irrespective of addition of stearic acid. Without stearic acid in metal powders, partial-ly coarse powders were obtained, which could be unfaverable to the densification of composite of composite powders. The hot-pressed compacts showed rupture strength of 1100MPa and hardness of about $46H_{RC}$, respectively.

  • PDF

An Experimental Study on the Engineering Properties of HPFRCC According to Kinds, Shapes and Volume Fraction of Fibers (섬유의 종류, 형상 및 치환율에 따른 HPFRCC의 공학적 특성에 관한 실험적 연구)

  • 김영덕;조봉석;김재환;김규용;최경렬;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.59-62
    • /
    • 2003
  • Kinds, shapes and fraction ratios of fibers have influence on properties of HPFRCC(High-Performance Fiver Reinforced Cementitious Concrete ) like bending strength, strain capacity and fracture toughness. For example, hydrophilic fibers have different chemical bond strength from hydrophobic fibers, fiber shapes influence on fiber pull-out and rupture, and fiber volume fraction influence on bending strength. In this study, to estimate influences of kinds, shapes and fraction ratios of fibers, we make HFRCC with 3 kind of fiber in various volume fraction of fiber and compare cracking, bending strength and fracture toughness. As the results, bending strength of HPFRCC was increased as fiber volume fraction was Increase and fiber tensile strength was increase, and strain capacity and fracture toughness of HFRCC was higher in fiber pull-out fracture than in fiber rupture fracture. And HFRCC showing pseudo strain hardening has higher fiber reinforce efficiency than others.

  • PDF

New Mechanism for the Reaction of Thianthrene Cation Radical Perchlorate with tert-Butyl Peroxide

  • Park, Bo-Kyung;Sohn, Chang-Kook;Lee, Wang-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.103-106
    • /
    • 2002
  • A new reaction mechanism is proposed for the reaction of thianthrene cation radical perchlorate $(Th^{+{\cdot}}CIO_4^-}$ and tert-butyl peroxide in acetonitrile at room temperature on the basis of experimental and theoretical results. Rapid C-O bond rupture instead of O-O bond cleavage was observed by a good peroxy radical trapping agent, thianthrene cation radical. Products were N-tert-butyl acetamide, thianthrene 5-oxide (ThO), thianthrene 5,5-dioxide $(SSO_2)$, and thianthrene (Th). Thianthrene 5,10-dioxide (SOSO) was not obtained. A comparative computational study of the cation radical of tert-butyl peroxide is made by using B3LYP and CBS-4. The computational results are helpful to explain the reaction mechanism.

Studies on the Performance of Self Healing of Plastic Cracks Using Natural Fibers in Concrete

  • Saraswathy, Velu;Kwon, Seung-Jun;Karthick, Subbiah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.2
    • /
    • pp.115-127
    • /
    • 2014
  • Addition of fibers in cement or cement concrete may be of current interest, but this is not a new idea or concept. Fibers of any material and shape play an important role in improving the strength and deformation characteristics of the cement matrix in which they are incorporated. The new concept and technology reveal that the engineering advantages of adding fibers in concrete may improve the fracture toughness, fatigue resistance, impact resistance, flexural strength, compressive strength, thermal crack resistance, rebound loss, and so on. The magnitude of the improvement depends upon both the amount and the type of fibers used. In this paper, locally available waste fibers such as coir fibers, sisal fibers and polypropylene fibers have incorporated in concrete with varying percentages and l/d ratio and their effect on compressive, split, flexural, bond and impact resistance have been reported.

The Electronic Structure of Methanethiol Adsorbed on Silver Surface: An Extended Huckel Study

  • Hwang, Sun-Gu;Jang, Yun-Hee;Kim, Ho-Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.635-643
    • /
    • 1991
  • The adsorption of methanethiol on a Ag(100) surface has been studied with Extended Huckel calculation in the cluster approximation of the substrate. Since it has been known that methanethiol is chemisorbed dissociatively on silver surface by rupture of S-H bond, the methanethiolate radical is taken as adsorbate. Of the various adsorption sites, the 4-fold hollow site is preferred. The methanethiolate radical is mainly adsorbed via its 2e orbital. The charge transfer from metal to this level leads to the C-S bond weakening, which is consistent with the red shift of C-S stretching mode in surface enhanced Raman (SER) spectrum.

Experimental Study on various Strength of Hardened Underwater Non-Segregation Concrete (경화된 수중불분리 콘크리트의 제강도 특성에 관한 실험적 연구)

  • 윤영수;최응규;이승훈;장일영;고용득
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.373-378
    • /
    • 1996
  • This paper presents the characteristics of various strengths of underwater non-segregation concrete. Three types of cements including low-heat cements has been used to make the test specimens for compressive strength, modulus of rupture and bond strength. The test specimens have been made both in ambient and underwater conditions to take into account the variation according to the environmental condition.

  • PDF

Thermal and Photochemical Reactions of Benzosilacyclobutenes with Alcohols. Intermediacy of o-Silaquinone Methide in the Photochemical Reactions

  • Kang, Kyung-Tae;Yoon, Ung-Chan;Seo, Hee-Chan;Kim, Kwang-Nam;Song Hwan Young;Lee, Jae-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.1
    • /
    • pp.57-60
    • /
    • 1991
  • Benzosilacyclobutenes were prepared from the reactions of 1,1-dichlorobenzosilacyclobutene with Grignard reagents or t-butyllithium. In the thermal reactions with alcohols, benzosilacyclobutenes underwent both benzyl-silicon and aryl-silicon bond rupture to yield (dialkyl)alkoxy-o-tolylsilanes and (dialkyl)alkoxybenzylsilanes, respectively. The photochemical reactions, however, produced only the former products via o-silaquinone methides.