• Title/Summary/Keyword: Bond order

Search Result 792, Processing Time 0.025 seconds

Thermodynamic Studies on the Structure of Binary Mixed Solvents(Ⅰ). Partial Molal Enthalpies of Alcohol-Cosolvent Mixtures (이성분 혼합용매의 구조에 대한 열역학적 연구(제1보). 알코올-Cosolvent 혼합물의 분몰랄엔탈피)

  • Nah, Sang Moo;Park, Young Dong
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.63-68
    • /
    • 1997
  • Calorimetric measurements have been carried out for the binary mixture between protic, ROH (R=Me, Et) and dipolar aprotic solvents, MeCN,$Me_2CO,\;MeNO_2(or EtNO_2)$in order to investigate the molecular interaction and liquid structure of isodielectric solvents. From the measured partial molar enthalpies of the solutions, excess enthalpies for the mixing process were determined. The hydrogen bond strength between two components decreases in the order of$ROH-ROH>ROH-Me_2CO>ROH-MeCN>ROH-MeNO_2(or EtNO_2)$and the hydrogen bond donor acidity decreases in the order of MeOH>EtOH. From this result, we can conclude that the most important interaction for the formation of binary liquid mixture comes from the specific hydrogen bond.

  • PDF

Theoretical Study on the Reaction Mechanism of Azacyclopropenylidene with Epoxypropane: An Insertion Process

  • Tan, Xiaojun;Wang, Weihua;Li, Ping
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2717-2722
    • /
    • 2014
  • The reaction mechanism between azacyclopropenylidene and epoxypropane has been systematically investigated employing the second-order M${\o}$ller-Plesset perturbation theory (MP2) method to better understand the reactivity of azacyclopropenylidene with four-membered ring compound epoxypropane. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. It was found that for the first step of this reaction, azacyclopropenylidene can insert into epoxypropane at its C-O or C-C bond to form spiro intermediate IM. It is easier for the azacyclopropenylidene to insert into the C-O bond than the C-C bond. Through the ring-opened step at the C-C bond of azacyclopropenylidene fragment, IM can transfer to product P1, which is named as pathway (1). On the other hand, through the H-transferred step and subsequent ring-opened step at the C-N bond of azacyclopropenylidene fragment, IM can convert to product P2, which is named as pathway (2). From the thermodynamics viewpoint, the P2 characterized by an allene is the dominating product. From the kinetic viewpoint, the pathway (1) of formation to P1 is primary.

Structural Requirements of Minoxidil Analogs for Enhancing Lysyl Hydroxylase Inhibitory Activity (Lysyl Hydroxylase의 저해활성을 증가시키기 위한 Minoxidil 유도체들의 구조적인 요건)

  • Myung, Pyung-Keun;Sung, Nack-Do;Lee, Jae-Heung
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.121-126
    • /
    • 2012
  • In order to explore structural features of minoxidil analogs with a view of enhancing lysyl hydroxylase (LH) inhibitory activity, molecular holographic QSAR (HQSAR) and CoMSIA (comparative molecular similarity indices analysis) were performed. The results from the atomic contributions with optimized the HQSAR 6-2 model indicated that, in case of pyrimidine-1-N-oxide substituent, C2 atom of pyrimidine ring and C'3-C'4 bond of 4-piperidinol group showed the highest impact on the inhibitory activity towards LH enzyme. It was also evident from the information of the optimized CoMSIA F5 model that the inhibitory activity mainly depended on the hydrophobic field contribution (36%) and the hydrogen bond (H-bond) field contribution (49.2%) of substrate molecule. Particularly, it is predicted that the functional groups which disfavor H-bond acceptors in large space around the piperidinol group and also the functional groups which favor the H-bond acceptors at C'4 (& C'5) atom in $R_5$ group play a role for increased inhibitory activity. With this in mind, it is likely that a novel candidate having more improved inhibitory activity on hair growth could be designed in the future.

AN EXPERIMENTAL STUDY ON THE BOND STRENGTH OF ETCHED CAST RESTORATION USING DIFFERENT METAL SURFACE TREATMENTS (수지접합 수복물용 합금의 피착면처리에 따른 결합력에 관한 실험적 연구)

  • Lee, Keun-Woo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.1
    • /
    • pp.13-22
    • /
    • 1991
  • This study investigated the effects of surface treatment on the tensile bond strength of resinbonded prosthesis. The Rexillium III specimens were treated with $50{\mu}m\;Al_2O_3$ blasting. Type IV gold alloy specimens were treated with $400^{\circ}C$ heating and tin plating method. All specimens were bonded with MBAS composite resin cement and followed by immersion test into the $37^{\circ}C$ water bath for 7 days. The specimens were debonded in tension with an Instron machine and observed with SEM. The modes of failure were recorded also. The following conclusions were obtained : 1. The tensile bond strength decreased in following order. $50{\mu}m\;Al_2O_3$ basted Resillium III group, Type IV gold alloy group treated with $400^{\circ}C$ heat and tin plating type IV gold alloy group, and statistical significant differences were observed(p<0.05). 2. The tensile bond strength decreased in all groups after 7 days immersion test, but statistical significant differences were observed in Rexillium III specimens only. 3. The sharp and irregular surface were observed in Rexillium III, but $400^{\circ}C$ heat treated and tin plated groups had round and broad surface in SEM. 4. The models of bond failure were cohesive-adhesive failure mainly.

  • PDF

Effects of the Magnetic Part of The Breit Term on Bonding: Model Calculations with Small Diatomic Molecules

  • Ryu, Seol;Kyoung K. Baeck;Han, Yeong Gyu;Lee, Yun Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.969-974
    • /
    • 2001
  • Model calculations for small molecules Li2, F2, LiF and BF have been performed at the Dirac-Fock level of theory using Dirac-Coulomb and Dirac-Coulomb-Magnetic Hamiltonians with various basis sets. In order to understand what may happen when the relativity becomes significant, the value of c, speed of light, is varied from the true value of 137.036 a.u. to 105 (nonrelativistic case) and also to 50 and 20 a.u. (exaggerated relativistic cases). Qualitative trends are discussed with special emphasis on the effect of the magnetic part of the Breit interaction term. The known relativistic effects on bonding such as the bond length contraction or expansion are demonstrated in this model study. Total energy, $\pi-orbital$ splitting, bond length, bond dissociation energy and dipole moment are calculated, and shown to be modified in a uniform direction by the effect of the magnetic term. Inclusion of the magnetic term raises the total energy, increases the bond length, reduces the $\pi-orbital$ splitting, increases the bond dissociation energy, and mitigates the changes in dipole moment caused by the Dirac term.

PHYSICAL PROPERTIES OF DIFFERENT SELF-ADHESIVE RESIN CEMENTS AND THEIR SHEAR BOND STRENGTH ON LITHIUM DISILICATE CERAMIC AND DENTIN (수종의 자가 접착 레진 시멘트의 물성 및 lithium disilicate ceramic과 상아질에 대한 전단결합강도 비교)

  • Shin, Hye-Jin;Song, Chang-Kyu;Partk, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.3
    • /
    • pp.184-191
    • /
    • 2009
  • The purpose of this study was to evaluate the physical properties of different self-adhesive resin cements and their shear bond strength on dentin and lithium disilicate ceramic and compare these result with that of conventional resin cement. For this study, four self-adhesive resin cements (Rely-X Unicem, Embrace Wetbond, Mexcem, BisCem), one conventional resin cement (Rely-X ARC) and one restorative resin composite (Z-350) were used. In order to evaluate the physical properties, compressive strength, diametral tensile strength and flexural strength were measured. To evaluate the shear bond strength on dentin, each cement was adhered to buccal dentinal surface of extracted human lower molars. Dentin bonding agent was applied after acid etching for groups of Rely-X ARC and Z-350. In order to evaluate the shear bond strength on ceramic, lithium disilicate glass ceramic (IPS Empress 2) disks were prepared. Only Rely-X ARC and Z-350 groups were pretreated with hydrofluoric acid and silane. And then each resin cement was adhered to ceramic surface in 2 mm diameter. Physical properties and shear bond strengths were measured using a universal testing machine. Results were as follows 1. BisCem showed the lowest compressive strength, diametral tensile strength and flexural strength. (P<0.05) 2. Self-adhesive resin cements showed significantly lower shear bond strength on the dentin and lithium disilicate ceramic than Rely-X ARC and Z-350 (P<0.05) In conclusion, self-adhesive resin cements represent the lower physical properties and shear bond strength than a conventional resin cement.

A Study on How to Cope with the Abusive Call on On-demand Bonds (독립적 보증과 그 부당한 청구에 대한 대응방안 연구)

  • KIM, Seung-Hyeon
    • THE INTERNATIONAL COMMERCE & LAW REVIEW
    • /
    • v.69
    • /
    • pp.261-301
    • /
    • 2016
  • Recently the abusive calls on on-demand bonds have been a critical issue among many engineering and construction companies in Korea. On-demand bond is referred to as an independent guarantee in the sense that the guarantee is independent from its underlying contract although it was issued based on such underlying contract. For this reason, the issuing bank is not required to and/or entitled to look into whether there really is a breach of underlying contract in relation to the call on demand-bonds. Due to this kind of principle of independence, the applicant has to run the risk of the on demand bond being called by the beneficiary without due grounds. Only where the call proves to be fraudulent or abusive in a very clear way, the issuing bank would not be obligated to pay the bond proceeds for the call on on-demand bonds. In order to prevent the issuing bank from paying the proceeds under the on-demand bond, the applicant usually files with its competent court an application for injunction prohibiting the beneficiary from calling against the issuing bank. However, it is in practice difficult for the applicant to prove the beneficiary's call on the bond to be fraudulent since the courts in almost all the jurisdictions of advanced countries require very strict and objective evidences such as the documents which were signed by the owner (beneficiary) or any other third party like the engineer. There is another way of preventing the beneficiary from calling on the bond, which is often utilized especially in the United Kingdom or Western European countries such as Germany. Based upon the underlying contract, the contractor which is at the same time the applicant of on-demand bond requests the court to order the owner (the beneficiary) not to call on the bond. In this case, there apparently seems to be no reason why the court should apply the strict fraud rule to determine whether to grant an injunction in that the underlying legal relationship was created based on a construction contract rather than a bond. However, in most jurisdictions except for United Kingdom and Singapore, the court also applies the strict fraud rule on the ground that the parties promised to make the on-demand bond issued under the construction contract. This kind of injunction is highly unlikely to be utilized on the international level because it is very difficult in normal situations to establish the international jurisdiction towards the beneficiary which will be usually located outside the jurisdiction of the relevant court. This kind of injunction ordering the owner not to call on the bond can be rendered by the arbitrator as well even though the arbitrator has no coercive power for the owner to follow it. Normally there would be no arbitral tribunal existing at the time of the bond being called. In this case, the emergency arbitrator which most of the international arbitration rules such as ICC, LCIA and SIAC, etc. adopt can be utilized. Finally, the contractor can block the issuing bank from paying the bond proceeds by way of a provisional attachment in case where it also has rights to claim some unpaid interim payments or damages. This is the preservative measure under civil law system, which the lawyers from common law system are not familiar with. As explained in this article, it is very difficult to block the issuing bank from paying in response to the bond call by the beneficiary even if the call has no valid ground under the underlying construction contract. Therefore, it is necessary for the applicants who are normally engineering and construction companies to be prudent to make on-demand bonds issued. They need to take into account the creditability of the project owner as well as trustworthiness of the judiciary system of the country where the owner is domiciled.

  • PDF

Bond Characteristics at the Interface between HMA Surface and RCC Base (아스팔트 표층과 RCC 기층 계면에서의 부착특성 연구)

  • Hong, Ki;Kim, Young Kyu;Bae, Abraham;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.37-46
    • /
    • 2017
  • PURPOSES : A composite pavement utilizes both an asphalt surface and a concrete base. Typically, a concrete base layer provides structural capacity, while an asphalt surface layer provides smoothness and riding quality. This pavement type can be used in conjunction with rollercompacted concrete (RCC) pavement as a base layer due to its fast construction, economic efficiency, and structural performance. However, the service life and functionality of composite pavement may be reduced due to interfacial bond failure. Therefore, adequate interfacial bonding between the asphalt surface and the concrete base is essential to achieving monolithic behavior. The purpose of this study is to investigate the bond characteristics at the interface between asphalt (HMA; hot-mixed asphalt) and the RCC base. METHODS : This study was performed to determine the optimal type and application rate of tack coat material for RCC-base composite pavement. In addition, the core size effect, temperature condition, and bonding failure shape were analyzed to investigate the bonding characteristics at the interface between the RCC base and HMA surface. To evaluate the bond strength, a pull-off test was performed using different diameters of specimens such as 50 mm and 100 mm. Tack coat materials such as RSC-4 and BD-Coat were applied in amounts of 0.3, 0.5, 0.7, 0.9, and $1.1l/m^2$ to determine the optimal application rate. In order to evaluate the bond strength characteristics with temperature changes, a pull-off test was carried out at -15, 0, 20, and $40^{\circ}C$. In addition, the bond failure shapes were analyzed using an image analysis program after the pull-off tests were completed. RESULTS : The test results indicated that the optimal application rate of RSC-4 and BD-Coat were $0.8l/m^2$, $0.9l/m^2$, respectively. The core size effect was determined to be negligible because the bond strengths were similar in specimens with diameters of 50 mm and 100 mm. The bond strengths of RSC-4 and BD-Coat were found to decrease significantly when the temperature increased. As a result of the bonding failure shape in low-temperature conditions such as -15, 0, and $20^{\circ}C$, it was found that most of the debonding occurred at the interface between the tack coat and RCC surface. On the other hand, the interface between the HMA and tack coat was weaker than that between the tack coat and RCC at a high temperature of $40^{\circ}C$. CONCLUSIONS : This study suggested an optimal application rate of tack coat materials to apply to RCC-base composite pavement. The bond strengths at high temperatures were significantly lower than the required bond (tensile) strength of 0.4 MPa. It was known that the temperature was a critical factor affecting the bond strength at the interface of the RCC-base composite pavement.

Change of shear bond strength of orthodontic brackets according to surface treatment on dental gold alloy (치과용 금합금의 표면처리에 따른 교정용 브라켓의 전단결합강도 변화)

  • Min, Ji-Hyun;Hwang, Hyeon-Shik;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.30 no.4 s.81
    • /
    • pp.483-490
    • /
    • 2000
  • The dental gold alloy shows a lower bond strength than the natural teeth in bracket bonding, and this can be a possible source of subsequent bond failure. This study aims to evaluate the effect of various gold alloy surface treatment techniques on shear bond strength between the orthodontic adhesives and the gold alloy and to find ways of increasing the bond strength. Two hundred and forty specimens made of the dental fold alloy were divided into twelve groups based on the combination of surface treatment methods(non-surface treatment, sandblasted, sandblasted plus tin-plated, and sandblasted plus intermediate adhesive) and adhesive systems (Ortho-one, Panavia 21, Superbond C&B). The specimens with bonded brackets were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength was measured by a universal testing machine. The results were as follows: 1. All surface-treated groups showed a significantly higher shear bond strength than non-surface-treated groups. 2. The sandblasted plus tin-plated group showed a significantly higher shear bond strength than the sandblasted group only when Panavia 21 was involved. 3. The sandblasted plus intermediate adhesive group showed a significantly higher shear bond strength than sandblasted group regardless of the type of adhesive used. 4. Of the three resin adhesive types, the Superbond C&B showed the highest bond strength, followed by Panavia 21 and Ortho-one. These findings suggest that a combination of sandblasting and intermediate resin treatment is desirable in order to enhance bracket bond strength regardless of adhesive types.

  • PDF

A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application (자동차 차체용 1.2GPa급 TRIP 강의 Weld-bond부 너깃경에 따른 인장전단특성에 관한 연구)

  • Choi, Ildong;Park, Jiyoun;Kim, Jae-Won;Kang, Mun-Jin;Kim, Dong-Cheol;Kim, Jun-Ki;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.69-77
    • /
    • 2015
  • High strength steels have been continually being developed to improve in fuel economy in automotive and ensure safety of passengers. New bonding and welding methods have been required for improving weldability on high strength steels. In this study, resistance spot welding and Weld-bond with nugget diameters of 4.0mm, 5.0mm, 6.0mm and 7.0mm were produced and tested, respectively. In order to confirm the effect of nugget diameters on tensile shear characteristic of the Weld-bond, tensile shear characteristics of Weld-bond were compared with those of resistance spot welding and adhesive bonding. Peak load of Weld-bond were increased as the nugget diameter increases. After appearing maximum peak load continuous fracture followed with second peak owing to load being carried by resistance spot weldment. Fracture modes of the adhesive layer in Weld-bond fractures were represented by mixed fracture mode, which are cohesive failure on adhesive part and button failure at resistance spot welds. The results showed that the tensile shear properties can be improved by applying Weld-bond on TRIP steel, and more apparent with nugget diameter higher than 5${\surd}$t.