• Title/Summary/Keyword: Bond order

Search Result 792, Processing Time 0.025 seconds

Context-aware Framework for Personalized Service (개인화 서비스 지원을 위한 상황인식 프레임워크)

  • Chang, Hyo-Kyung;Kang, Yong-Ho;Jang, Chang-Bok;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.301-307
    • /
    • 2012
  • The development of mobile devices and the spread of wireless network help share and exchange information and resources more easily. The bond them to Cloud Computing technology help pay attention to "Mobile Cloud" service, so there have been being a lot of studies on "Mobile Cloud" service. Especially, the important of 'Personalization Service' which is customized for each user's preference and context has been increasing. In order to provide appropriate personalization services, it enables to recognize user's current state, analyze the user's profile like user's tendency and preference, and draw the service answering the user's request. Most existing frameworks, however, are not very suitable for mobile devices because they were proposed on the web-based. And other context information except location information among user's context information are not much considered. Therefore, this paper proposed the context-aware framework, which provides more suitable services by using user's context and profile.

A Study over Catalytic Behavior Octane Enhancer, TAME Synthesis with Ion Exchange Resin Catalysts (이온교환수지 촉매를 이용한 옥탄가 향상제인 TAME 합성반응의 연구)

  • Park, Jin-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.7 no.5
    • /
    • pp.832-842
    • /
    • 1996
  • TAME synthesis was studied in a fixed bed reactor with 3 different types of exchanged resins i.e, Amberlyst-15, Amberlyst-15(wet) and Amberlyst XN-1010. Amberlyst-15 has highest activity, presumably due to the higher reaction participation of the inner active sites of gel shape microparticular resin structure. The optimum reaction conditions for TAME synthesis were found as follows ; reaction temperature of $135^{\circ}C$, molar ratio(MeOH/I.A.A) of 1.0~4.0 and W/F of 2.0~4.0 gr.-cat. hr/gr.-mole. The cross-linking bond of styrene divinyl benzene was observed at $2{\theta}=20$ in XRD pattern. The DSC analysis showed that the thermal stability was in order of Amberlyst-15>Amberlyst-15(wet)>Amberlyst XN-1010. The apparent activation energies of TAME synthesis reaction with Amberlyst-15, Amberlyst-15(wet) and Amberlyst XN-1010 were 12.36, 12.46 and 14.72 kcal/mole, respectively.

  • PDF

A Study on the Materials and Technique of Lime Plaster Work in Government Constructions in the Late of Joseon Dynasty(17~19c) - Focused on the Lime Plaster Materials in 'Yeonggeon-Uigwe'(Construction Reports) - (조선후기 관영건축공사의 회(灰)미장재와 공법에 관한 연구 - 영건의궤(營建儀軌)의 유회(油灰), 수회(水灰), 양상도회(樑上塗灰)를 중심으로)

  • Lee, Kweon-Yeong
    • Journal of architectural history
    • /
    • v.18 no.4
    • /
    • pp.63-79
    • /
    • 2009
  • Since the 1970's, UNESCO and ICOMOS have adopted or emphasized on the principles of historic preservation. One of them is what to require a repair have not to be repaired beyond the limits of the features and techniques to have been born in those days of establishment. On the premise, this paper is to examine the materials and technique of lime plaster work in order for roof ridge, and for bond paste of stones and bricks in government constructions in the late of Joseon dynasty(17~19c). The result of this examination will come up with a basic conformity in the case of repairing the building established in the late of Joseon dynasty. This paper is carried out for the proper repair and restoration of architectural cultural properties. Construction reports and other documents in those days are examined for the study. Following conclusions have been reached through the study. The components of old plaster mixtures which agglutinate stones each other were quicklime, perilla oil, and paper fiber. The components of old plaster mixtures which point joint of black bricks consisted of slaked lime, perilla oil, paper fiber, and cereal starch. These components were the same as coat surface of roof ridges. In the case of times, one of the following sand, white clay, sap of boiled elm bark was added to these components for the purpose of high efficiency. These materials and techniques which applied to plaster work of those buildings had developed in the process of making royal tombs. But these materials and techniques were quite different from the present.

  • PDF

Conformation of Soymilk Protein Treated by Pretense (단백분해효소 처리된 두유단백질의 구조적 특성)

  • 변진원
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.4
    • /
    • pp.331-336
    • /
    • 2002
  • Conformation of soymilk protein was examined to obtain basic information for improved calcium intolerence of soymilk protein partially hydrolyzed with protease. Surface hydrophobicities of three proteins showed the order of SMP(soymilk protein) < SPI(soy protein isolate) < PT-SMP(protease treated soymilk protein). Total thiol group contents of SMP and PT-SMP were similar but larger than that of SPI. Reducing rate of disulfide bond in PT-SMP after 2-mercaptoethanol treatment was laster than that in SMP. And so, this result indicates that PT-SMP may be less compacting due to protease treatement. From circular dichroism result, PT-SMP showed different pattern from SMP and SPI suggesting change of secondary structure by hydrolysis. And analysis of heat denaturating property by DSC showed that denaturation enthalpy of three proteins were all small. Especially enthalpy of PT-SMP was least, and this result suggested that PT-SMP was denatured easily by heating due to less compacting structure.

A Microfluidic Chip-Based Creatinine Filtration Device (마이크로 플루이딕 칩을 기반으로 한 크레아티닌 여과장치)

  • Lee, Sack;Shin, Dong-Gyu;Nguyen, Thanh Qua;Park, Woo-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.921-925
    • /
    • 2015
  • The number of people suffering from renal disease increases every year. One of the most common treatments (clinical care options) for renal diseases is hemodialysis. However it takes a long time and has a high cost. Therefore, the importance of artificial kidney research has risen. Filtering creatinine from blood is one of the prime renal functions. Thus, we designed a novel two channel microfluidic chip focused on that function. In order to bond the individual polydimethylsiloxane layers, we have developed a housing system using acrylic plastic frame. This method has significant advantages in changing filter membranes. We use anodic aluminum oxide for the filter membrane. We analyzed the difference in the absorbance values for various creatinine concentrations using the Jaffe reaction. For the purpose of acquiring a standard equation to quantify the creatinine concentration, we interpolated the measured data and confirmed the concentration of the filtered solution. Through this experiment, we determined how the filtration efficiency depended on the flow rate and creatinine concentration.

Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating (공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Ryu, Hojun;Kim, Jongkuk;Jang, Young-Jun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

Cyclic behavior of steel I-beams modified by a welded haunch and reinforced with GFRP

  • Egilmez, O. Ozgur;Alkan, Deniz;Ozdemir, Timur
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.419-444
    • /
    • 2009
  • Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. Reducing the flange-web slenderness ratios (FSR/WSR) of beams is the most effective way in mitigating local member buckling as stipulated in the latest seismic design specifications. However, existing steel moment frame buildings with beams that lack the adequate slenderness ratios set forth for new buildings are vulnerable to local member buckling and thereby system-wise instability prior to reaching the required plastic rotation capacities specified for new buildings. This paper presents results from a research study investigating the cyclic behavior of steel I-beams modified by a welded haunch at the bottom flange and reinforced with glass fiber reinforced polymers at the plastic hinge region. Cantilever I-sections with a triangular haunch at the bottom flange and flange slenderness ratios higher then those stipulated in current design specifications were analyzed under reversed cyclic loading. Beam sections with different depth/width and flange/web slenderness ratios (FSR/WSR) were considered. The effect of GFRP thickness, width, and length on stabilizing plastic local buckling was investigated. The FEA results revealed that the contribution of GFRP strips to mitigation of local buckling increases with increasing depth/width ratio and decreasing FSR and WSR. Provided that the interfacial shear strength of the steel/GFRP bond surface is at least 15 MPa, GFRP reinforcement can enable deep beams with FSR of 8-9 and WSR below 55 to maintain plastic rotations in the order of 0.02 radians without experiencing any local buckling.

Preparation of Tenoxicam Salt with Ethanolamine to Enhance the Percutaneous Absorption (테녹시캄의 피부 흡수율을 증진시키기 위한 에탄올아민염의 제조)

  • Gwak, Byung-Tae;Chun, Myung-Kwan;Choi, Hoo-Kyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.3
    • /
    • pp.169-174
    • /
    • 2006
  • The aim of this work was to prepare tenoxicam-ethanolamine salt with improved physicochemical properties for transdermal application. Tenoxicam-ethanolamine salt was prepared in methylene chloride and its physicochemical properties were investigated by DSC and FT-lR. The broad peak of tenoxicam around 3600-3200 $cm^-1$ was shifted to lower wavenumber and more broadened. The characteristic endothermic melting peak of tenoxicam appeared at $223^{\circ}C$. The melting peak of tenoxicam-ethanolamine salt was shifted to $159^{\circ}C$. In contrast to relatively small difference in the partition coefficients of tenoxicam and the tenoxicam-ethanolamine salt, large difference in aqueous solubility was observed. $Crovol^{\circledR}$ PK4O (PEG-12 palm kernel glycerides) provided the highest skin flux for both compounds. The order of the enhancing effect of the various vehicles tested was similar for tenoxicam and tenoxicam-ethanolamine salt, which indicated that their enhancing mechanism for tenoxicam and tenoxicam-ethanolamine salt is similar. Tenoxicam-ethanolamine salt had a higher skin flux than tenoxicam by 1.2- to 31.7-fold, depending on the vehicles used. It is suggested that the vehicles with medium HLB value, 1 double bond, and lower ethylene oxide chain length have a better ability to modify the permeability of the stratum corneum and to promote the effective penetration of tenoxicam and tenoxicam-ethanolamine salt.

Evaluation of tensile properties of SFRC for TBM tunnel segment (TBM 터널 세그먼트용 강섬유보강 콘크리트의 인장특성 평가)

  • Moon, Do-Young;Chang, Soo-Ho;Bae, Gyu-Jin;Lee, Gyu-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.247-260
    • /
    • 2012
  • In order to reduce the amount of steel reinforcements in TBM tunnel segments, the use of Steel Fiber Reinforced Concrete(SFRC) is being tried. The steel fibers with higher aspect ratio than that used in tunnel shotcrete are preferred to compensate the deficiency in tensile strength of the segments. In this study, the tensile properties of SFRC with aspect ratio of steel fibers equal to 80 were evaluated through flexural test and Double Punch Test. In the results of flexural test, flexural strengths of the SFRC were increased about 30%~150% thanks to bond of steel fibers used to concrete and could be properly predicted by the equation proposed by Oh(2008). There was a great difference in the estimated direct tensile strengths of the SFRC by the equations presented in ACI and RILEM. It was found that the Double Punch Test could be suitable methodology to estimate the direct tensile strength presented in RILEM of the SFRC.

The effect of mortar type and joint thickness on mechanical properties of conventional masonry walls

  • Zengin, Basak;Toydemir, Burak;Ulukaya, Serhan;Oktay, Didem;Yuzer, Nabi;Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.579-585
    • /
    • 2018
  • Masonry walls are of a complex (anisotropic) structure in terms of their mechanical properties. The mechanical properties of the walls are affected by the properties of the materials used in wall construction, joint thickness and the type of masonry bond. The carried-out studies, particularly in the seismic zones, have revealed that the most of the conventional masonry walls were constructed without considering any engineering approach. Along with that, large-scale damages were detected on such structural elements after major earthquake(s), and such damages were commonly occurred at the brick-joint interfaces. The aim of this study was to investigate the effect of joint thickness and also type of mortar on the mechanical behavior of the masonry walls. For this aim, the brick masonry walls were constructed through examination of both the literature and the conventional masonry walls. In the construction process, a single-type of brick was combined with two different types of mortar: cement mortar and hydraulic lime mortar. Three different joint thicknesses were used for each mortar type; thus, a total of six masonry walls were constructed in the laboratory. The mechanical properties of brick and mortars, and also of the constructed walls were determined. As a conclusion, it can be stated that the failure mechanism of the brick masonry walls differed due to the mechanical properties of the mortars. The use of bed joint thickness not less than 20 mm is recommended in construction of conventional masonry walls in order to maintain the act of brick in conjunction with mortar under load.