DOI QR코드

DOI QR Code

A Microfluidic Chip-Based Creatinine Filtration Device

마이크로 플루이딕 칩을 기반으로 한 크레아티닌 여과장치

  • Lee, Sack (Dept. of Mechanical and Automotive Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Shin, Dong-Gyu (Dept. of Mechanical and Automotive Engineering, Seoul Nat'l Univ. of Science and Technology) ;
  • Nguyen, Thanh Qua (Convergenence Institute of Biomedical Engineering and Biomaterials, Seoul Nat'l Univ. of Science and Technology) ;
  • Park, Woo-Tae (Dept. of Mechanical and Automotive Engineering, Seoul Nat'l Univ. of Science and Technology)
  • 이삭 (서울과학기술대학교 기계.자동차공학과) ;
  • 신동규 (서울과학기술대학교 기계.자동차공학과) ;
  • 응웬탄콰 (서울과학기술대학교 의공학-바이오소재 융합협동과정) ;
  • 박우태 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2015.04.14
  • Accepted : 2015.09.30
  • Published : 2015.12.01

Abstract

The number of people suffering from renal disease increases every year. One of the most common treatments (clinical care options) for renal diseases is hemodialysis. However it takes a long time and has a high cost. Therefore, the importance of artificial kidney research has risen. Filtering creatinine from blood is one of the prime renal functions. Thus, we designed a novel two channel microfluidic chip focused on that function. In order to bond the individual polydimethylsiloxane layers, we have developed a housing system using acrylic plastic frame. This method has significant advantages in changing filter membranes. We use anodic aluminum oxide for the filter membrane. We analyzed the difference in the absorbance values for various creatinine concentrations using the Jaffe reaction. For the purpose of acquiring a standard equation to quantify the creatinine concentration, we interpolated the measured data and confirmed the concentration of the filtered solution. Through this experiment, we determined how the filtration efficiency depended on the flow rate and creatinine concentration.

매년마다 신장질환으로 고통 받는 사람들이 증가하는 추세이다. 가장 흔한 치료법 중 하나는 혈액 투석인데, 이 방법은 많은 시간이 걸리고, 비용이 많이 드는 방법이다. 이러한 이유 때문에, 인공신장 연구의 중요성이 대두되고 있다. 혈액에서 크레아티닌을 여과하는 것은 신장의 주요 기능 중 하나이다. 우리는 이 기능에 초점을 맞춘 새로운 2 채널 마이크로 플루이딕 칩을 고안하였다. 두 개의 PDMS 층을 결합하기 위하여, 아크릴을 가공한 하우징 시스템이 개발하였으며, 이 방법은 여과막을 쉽게 바꿀 수 있다는 이점이 있다. 우리는 알루미늄 양극 산화물(AAO)을 여과막으로 사용하였다. 여과된 용액은 자페반응(Jaffe reation)을 이용하여, 크레아티닌 농도별 흡광도 차이를 분석하였다. 크레아티닌의 양에 대한 표준식을 만들어, 측정한 데이터를 보간하여 여과된 용액의 농도를 확인하였다. 실험을 통하여 유량 및 크레아티닌 농도에 따른 여과율을 얻을 수 있었다.

Keywords

References

  1. Xue, J. L., Ma, J. Z., Louis, T. A. and Collins, A. J., 2001, "Forecast of the Number of Patients with End- Stage Renal Disease in the United States to the Year 2010," Journal of the American Society of Nephrology, 12(12), pp. 2753-2758.
  2. Huh, D., Matthews, B. D., Mammoto, A., Montoya- Zavala, M., Hsin, H. Y. and Ingber, D. E., 2010, "Reconstituting Organ-Level Lung Functions on a Chip," Science, 328(5986), pp. 1662-1668. https://doi.org/10.1126/science.1188302
  3. Barr, D. B., Wilder, L. C., Caudill, S. P., Gonzalez, A. J., Needham, L. L. and Pirkle, J. L., 2005, "Urinary Creatinine Concentrations in the US Population: Implications for Urinary Biologic Monitoring Measurements," Environmental Health Perspectives, 192-200.
  4. Hill, R. H. Jr, Ashley, D. L., Head, S. L., Head, S. L. and Pirkle, J. L., 1995, "p-Dichlorobenzene Exposure Among 1 000 Adults in the United States," Archives of Environmental Health: An International Journal, 50(4), pp. 277-280. https://doi.org/10.1080/00039896.1995.9935954
  5. Shealy, D. B., Barr, J. R., Ashley, D. L., Patterson Jr, D. G., Camann, D. E. and Bond, A. E., 1997, "Correlation of Environmental Carbaryl Measurements with Serum and Urinary 1-Naphthol Measurements in a Farmer Applicator and His Family," Environmental Health Perspectives, 105(5), 510. https://doi.org/10.1289/ehp.97105510
  6. Zhang, J., Tan, K. L. and Gong, H. Q., 2001, "Characterization of the Polymerization of SU-8 Photoresist and Its Applications in Micro-Electro- Mechanical Systems (MEMS)," Polymer Testing, 20(6), pp. 693-701. https://doi.org/10.1016/S0142-9418(01)00005-8
  7. Shelby, J. P., White, J., Ganesan, K., Rathod, P. K. and Chiu, D. T., 2003, "A Microfluidic Model for Single-Cell Capillary Obstruction by Plasmodium Falciparum-Infected Erythrocytes," Proceedings of the National Academy of Sciences, 100(25), pp. 14618-14622.
  8. Li, X., Chen, W., Liu, G., Lu, W. and Fu, J., 2014, "Continuous-Flow Microfluidic Blood Cell Sorting for Unprocessed Whole Blood Using Surface-Micromachined Microfiltration Membranes," Lab on a Chip, 14(14), pp. 2565-2575. https://doi.org/10.1039/c4lc00350k
  9. Kang, T. G., Yoon, Y. J., Ji, H., Lim, P. Y. and Chen, Y., 2014, "A Continuous Flow Micro Filtration Device for Plasma/Blood Separation Using Submicron Vertical Pillar Gap Structures," Journal of Micromechanics and Microengineering, 24(8), 087001. https://doi.org/10.1088/0960-1317/24/8/087001
  10. Kaazempur-Mofrad, M. R., Vacanti, J. P., Krebs, N. J. and Borenstein, J. T., 2004, "A MEMS-Based Renal Replacement System," In Proceedings of the Solid State Sensor, Actuator, and Microsystems Workshop, pp. 6-10.