• Title/Summary/Keyword: Bond order

Search Result 792, Processing Time 0.024 seconds

Laser Ablation : Fundamentals and applications in Micropatterning and Thin Film Formation

  • J. Heitz;D. Bauerle;E. Arenholz;N. Arnold;J.T. Dickinson
    • Journal of Photoscience
    • /
    • v.6 no.3
    • /
    • pp.103-108
    • /
    • 1999
  • We present recent results on ablation mechanism, single-pulse laser micropatterning , pulsed-laser deposition(PLD) and particulates formation accompanying laser ablation, with special emplasis on polymers, in particular polymide, (PI), and polytetrafluoroethylene, (PTFE). Ablation of polymers is described on the basis of photothermal bond breaking within the bulk material. Here, we assume a first order chemical reaction, which can be described by an Arrhenius law. Ablation starts when the density of broken bonds at the surface reaches a certain critical value. Single-pulse laser ablation of polyimide shows a clear-length dependence of the threshold fluence. This experimental result strongly supports a thermal ablation model. We discuss the various possibilities and drawbacks of PLD and describe the morphology, physical properties and applications of PTFE films.

  • PDF

Inactivation of Castor Bean Allergen CB-1A by Heating and Chemical Treatment

  • Kim, Byong-Ki
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.441-446
    • /
    • 2006
  • The biological effects of heating and chemical treatment on castor meal were investigated in order to develop a procedure to inactivate its antigenic activity in a way that is suitable for industrial applications. A 1% solution of purified castor bean allergen (CB-1A) was heat-treated with or without exposure to NaOH and NaOCI (250 ppm each). CB-1A exhibited extreme stability when heat-treated alone. In the presence of NaOH and NaOCl, CB-1A showed a drastic decrease in antigenic activity as the temperature surpassed the critical level of $70^{\circ}C$. The gradual disappearance of disc gel electrophoresis bands presumably responsible for the allergenicity of CB-1A, along with the significant losses of the amino acids phenylalanine, methionine, arginine, histidine, and cysteine correlated with the loss of CB-1A activity. CB-1A showed a single symmetrical band in SDS acrylamide gel electrophoresis with an estimated molecular weight of 6,000 daltons. The chemical and heat treatments reduced the disulfide bond content of CB-1A by 9.1% with a coincident increase in sulfhydryl bonds.

Formation of Corporate Governance in Korea: The Rise of Chaebols (1910-1980)

  • Gwon, Jae-Hyun
    • Asian Journal of Business Environment
    • /
    • v.5 no.4
    • /
    • pp.67-72
    • /
    • 2015
  • Purpose - This aim of this study is to examine how conglomerates in Korea have evolved from the perspective of institutional economics. The growth of the economy, dominated by large conglomerates, is projected in light of the dynamic equilibrium between government and capitalists. Research design, data, and methodology - The historical formation of big business groups is examined in chronological order. For the analysis, we divide the assessment into three different eras: Japanese colonial rule, liberation up to the civil war, and the fast growing period since the military coup. Each period is viewed as a dynamic equilibrium that is shaped by economic agents. Results and Conclusion - Despite the rise of modern commerce during the colonial era, contemporary conglomerates came into being with the "enemy property" allotted by the government. Around the civil war, the government coexisted with prototype conglomerates through foreign aid. As the external aid decreased, the system could not be sustained anymore, thus the military coup took place. The reinstated strong bond between government and the conglomerates has shaped the forms of the modern conglomerates thereafter.

Determination of Reactivity by MO Theory (ⅩⅧ). An Intermolecular Perturbation Study of the Acid-Catalyzed Hydrolysis of Diformamide$^*$

  • Kwun, Oh-Cheun
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.3
    • /
    • pp.109-112
    • /
    • 1980
  • Ultraviolet spectrophotometric investigations were carried out on monoalkylbenzene-iodine systems in carbon tetrachloride. The results reveal the formation of one-to-one molecular complexes. On the basis of the equilibrium constants for these complexes of representative monosubstituted benzenes, the following order of increasing stability is obtained: i-propyl- ${\Delta}$H, ${\Delta}$G and ${\Delta}$S for the interaction of a number of monoalkyl substituted benzenes with iodine have been determined. In general, it can be said that as ${\Delta}$H becomes increasingly negative, corresponding decreases in the ${\Delta}$G and the ${\Delta}$S values are observed, and these variations are linear. The thermodynamic constants become increasingly negative with increasing monoalkyl substitution of the aromatic donor nucleus. The complex bond is therefore weak, and its formation is accompanied by relatively small entropy changes. Thus, analysis of these findings is discussed.

Effects of Molecular Attraction and Orientations in the Vibration-Vibration Energy Exchange

  • Ree, Jong-Baik;Chung, Keun-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.124-129
    • /
    • 1986
  • The effects of molecular attraction and orientations for the energy mismatch variance, vibrational energy level and double-quantum transition, in the vibration-vibration energy exchange, have been considered. The contribution of molecular attraction increases the exchange rate of the purely repulsive interaction, in general, significantly, but which becomes smaller as the temperature is increased. As the energy mismatch is increased, its contribution is also increased, but which is small. However, its contribution for the double-quantum transition is very paramount. At each orientation, the exchange rate constants have been calculated and compared with the results for rotational average, and it is found that the exchange rate is a strong function of the orientation angles of colliding molecules. We have also discussed about the system having the strong interaction such as the hydrogen bond, and it is found that for this system the preferred orientation should be considered in order to calculate the exchange rates.

Theoretical Studies on the Gas-Phase Pyrolysis of 2-Alkoxypyrimidines, 2-Alkoxypyrazines, 4-Ethoxypyrimidine and 3-Ethoxypyridazine

  • Kim, Chang-Kon;Lee, Bon-Su;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.32-36
    • /
    • 1992
  • The gas-phase pyrolysis reactions of 2-alkoxypyrimidines(II), 2-alkoxypyrazines(III), 4-ethoxypyrimidine(IV) and 3-ethoxypyridazine(V) are investigated theoretically using the AM1 MO method. These compounds pyrolyze in a concerted retro-ene process with a six-membered cyclic transition state (TS). The relative order of reactivity if (IV)>(II)>(III)>(V), which can be rationalized by the two effects arising from electron-withdrawing power of the aza-substituent: (ⅰ) Electron withdrawal from the C-O bond accelerates the rate and (ⅱ) electron withdrawal from the $N^1$-atom, that is participating in the six-membered TS, deactivates the reaction. We are unable to explain the experimental result of the greatest reactivity for pyridazine, (V), with our AM1 results. The reactivity increase accompanied by successive methylation of the ethoxy group, ethoxytert-butoxy, is due to a release of steric crowding in the activation process.

The Charge Transfer Complexes of Monoalkylbenzene with Iodine in Carbon Tetrachloride (I)

  • Oh-Cheun Kwun
    • Bulletin of the Korean Chemical Society
    • /
    • v.1 no.2
    • /
    • pp.62-68
    • /
    • 1980
  • Ultraviolet spectrophotometric investigations have been carried out the systems of monoalkylbenzene with iodine in carbon tetrachloride. The results reveal the formation of one to one molecular complexes. The equilibrium constants for these complexes of representative monosubstituted benzene reveal the following order of increasing stability: benzene < methyl- < ethyl- < n-propyl-benzene. The value of ${\Delta}H$, ${\Delta}G$, and ${\Delta}S$ for interaction of a number of monoalkyl substituted benzene with iodine has been determinated. In general, as ΛH becomes increasingly negative, corresponding decreases in ${\Delta}G$ and ${\Delta}S$ values are observed, and these variation are linear. The thermodynamic constants become increasingly negative with increasing monoalkyl substitution of the aromatic donor nucleus. The complex bond is therefore weak, and its formation is accompanied by relatively small entropy changes.

Mechanistic Studies on the Oxidation of Triphenylphosphine by $[(tpy)(bpy)Ru^{IV}=O]^{2+}$, Structure of the Parent Complex $[(tpy)(bpy)Ru^{II}-OH_2]^{2+}$

  • 석원경;김미영;Yoshinobu Yokomori;Derek J. Hodgson;Thomas J. Meyer
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.619-624
    • /
    • 1995
  • Oxidation of triphenylphosphine to triphenylphosphine oxide by [(tpy)(bpy)Ru(O)]2+ (tpy is 2,2':6',2"-terpyridine and bpy is 2,2'-bipyridine) in CH3CN has been studied. Experiments with the 18O-labeled oxo complex show that transfer of oxygen from [(tpy)(bpy)RuⅣ=O]2+ to triphenylphosphine is quantitative within experimental error. The reaction is first order in each reactant with k (25.3 ℃)=1.25 × 106 M-1s-1. The inital product, [(tpy)(bpy)RuⅡ-OPPh3]2+, is formed as an observable intermediate and undergoes slow k (25 ℃)=6.7 × 10-5 s-1 solvolysis. Activation parameters for the oxidation step are ΔH≠=3.5 kcal/mol and ΔS≠=-23 eu. The geometry at ruthenium in the complex cation, [(tpy)(bpy)RuⅡ(OH2)]2+, is approximately octahedral with the ligating atoms being the three N atoms of the tpy ligand, the two N atoms of the bpy ligand, and the oxygen atom of the aqua ligand. The Ru-O bond length is 2.136(5) Å.

Structural Transition of A-Type Zeolite: Molecular Dynamics Study

  • Song, Mee-Kyung;Chon, Hak-Ze
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.255-258
    • /
    • 1993
  • Molecular dynamics (MD) calculations were carried out in order to investigate the effect of MD cell size to predict the melting phenomena of A-type zeolite. We studied two model systems: a pseudocell of $(T_2O_4Na)_n$, (L= 12.264 $^{\AA}$, N= 84) and a true-cell of (SiAlO$_4Na)_n$. (L= 24.528 $^{\AA}$, N= 672), where T is Si or Al. The radial and bond angle distribution functions of T(Si, Al)-O-T(Si, Al) and diffusion coefficients of T and O were reported at various temperatures. For the true-cell model, the melting temperature is below 1500 K and probably around 1000 K, which is about 600-700 K lower than the pseudocell model. Although it took more time (about 30 times longer) to obtain the molecular trajectories of the true-cell model than those of the pseudocell model, the true-cell model gave more realistic structural transition for the A-type zeolite, which agrees with experiment.

MO Studies on the Gas-Phase Reaction of Dypnone Oxide with Chloride Ion$^\dag$

  • Kim, Wang-Ki;Sohn, Chang-Kook;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.279-282
    • /
    • 1986
  • The MNDO calculations were performed in order to investigate the gas-phase reaction mechanism of 2-propene-1-al oxide, as a model compound of dypnone oxide(1,3-diphenyl-2-butene-1-one oxide) with the chloride ion. Optimized geometries and heats of formation for two probable concerted pathways, CHO and H migration, were determined and their activation energies were obtained. MO results show that although the formyl migration is thermodynamically more favorable than the hydride migration, the latter kinetically predominates over the formyl migration, which is contrary to the established migrating preferences. It is concluded that the hydride migratory propensity is catalyzed by the chloride ion by reducing the capability of the carbonyl ${\pi}$ bond to participate in the migration.