• 제목/요약/키워드: Bond Model

검색결과 751건 처리시간 0.031초

A COMPARATIVE STUDY OF BOND STRENGTH OF RECYCLED BRACKETS (재생 브라켓의 전단접착강도에 관한 비교 연구)

  • Shur, Cheong-Hoon;Choi, Eun-Ah
    • The korean journal of orthodontics
    • /
    • 제28권4호
    • /
    • pp.641-657
    • /
    • 1998
  • This study was undertaken to compare the bond strength and the fracture site of new and recycled brackets according to the base design. 252 sound premolars extracted for orthodontic treatment were collected and Type I, Type II, Type III brackets were divided into four groups by recycling method Each bracket was then bonded to an extracted premolar. Instron Universal Testing Machine(model W) was used to measure the shear bond strength, and the surface of the recycled brackets were viewed in SEM For the analysis of the results, one way ANOVA and Scheffe's multiple range test was executed using the SPSSWIN program. 1. The shear bond strength showed statistically significant difference according to the bracket base design(p<0.001). Type III bracket(round indentation base, micro-etched) showed the highest bond strength, Type I bracket(foil-mesh base) was second, and Type II bracket(grooved integral base, micro-etched) was last. 2. The effect of recycling on the bond strength was different according to bracket type. The shear bond strength of Type I, Type II brackets showed the smallist reduction when treated for 1 minute in Big Jane(p<0.05), but the shear bond strength of Type III brackets showed no statistically significant difference according to recycling method(p>0.05). 3. In Type I, Type II brackets, frequent fracture site was bracket-resin interface, but in Type III brackets, about half of the resin was retained on the tooth surface frequently. 4. The shear bond strength was highest when about half of the resin was retained on the tooth surface(p<0.05). 5. The resin remnant on the bracket base after recycling had no effect on the shear bond strength.

  • PDF

Modelling time-dependent cracking in reinforced concrete using bond-slip Interface elements

  • Chong, Kak Tien;Gilbert, R. Ian;Foster, Stephen J.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.151-168
    • /
    • 2004
  • A two-dimensional nonlinear finite element model is developed to simulate time-dependent cracking of reinforced concrete members under service loads. To predict localized cracking, the crack band model is employed to model individual crack opening. In conjunction with the crack band model, a bond-interface element is used to model the slip between concrete and reinforcing steel permitting large slip displacements between the concrete element nodes and the steel truss element nodes at crack openings. The time-dependent effects of concrete creep and shrinkage are incorporated into the smeared crack model as inelastic pre-strains in an iterative solution procedure. Two test examples are shown to verify the finite element model with good agreement between the model and the observed test results.

EFFECTS OF METAL SURFACE TREATMENTS ON THE SHEAR BOND STRENGTH BETWEEN NI-CR DENTURE BASE AND RELINE RESINS (금속 표면처리방법이 니켈-크롬 합금 의치상과 첨상레진간의 결합강도에 미치는 영향)

  • Kim Young-Il;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제40권4호
    • /
    • pp.396-405
    • /
    • 2002
  • The purpose of this study was to evaluate the effects of four metal surface treatments on the shear bond strength of reline resin to Ni-Cr alloy. The denture base metal used in this study was Ni-Cr alloy(Ticonium Premium 100. Ticonium Co., U.S.A.). 120 specimens were divided into five metal surface treatments: sandblasting only, MR. BOND(Tokuyama Corp.. Japan), Cesead Opaque Primer(Kuraray Co., Japan), METALPRIMER II(GC Corp., Japan) and Super-Bond C&B(Sun Medical Co., Japan) after sandblasting. They were bonded with one of three reline resins Mild Rebaron(GC Corp., Japan), Mild Rebaron LC(GC Corp., Japan) and Meta Base M(Sun Medical Co., Japan). Then they were thermocycled 1,000 times at temperature of $4^{\circ}C$ and $60^{\circ}C$. The shear bond strengths were measured using the universal testing machine(Instron, Model 4301, England) with a cross-head speed of 2 mm/min. The results were as follows : 1. All metal primers and adhesive cement significantly improved the bond strength of reline resin to Ni-Cr alloy compared with sandblasted specimens. 2. In Mild Rebaron and Mild Rebaron LC. Cesead Opaque Primer showed the highest bond strength, but the differences among Cesead Opaque Primer, MR. BOND and METALPRIMER II were not significant. The bond strength of Cesead Opaque Primer was significantly different with that of Super-Bond C&B. 3. In Meta Base M, Super-Bond C&B showed the highest bond strength, but there was no difference between Super-Bond C&B and three metal primers. 4. There was no difference in the bond strength between Mild Rebaron and Mild Rebaron LC when metal surface was treated with the same method. 5. The bond strengths of Mild Rebaron and Mild Rebaron LC treated with Cesead Opaque Primer were higher than that of Meta Base M. The bond strengths of Mild Rebaron treated with MR. BOND and METALPRIMER II was higher than that of Meta Base M, However, there was no difference among three reline resins treated with Super-Bond C&B.

Modeling of Tension Stiffening Effect Based on Nonlinear Bond Characteristics in Structural Concrete Members (비선형 부착 특성에 기반한 철근콘크리트 부재의 인장증강효과 모델)

  • Lee, Gi-Yeol;Ha, Tae-Gwan;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • 제19권6호
    • /
    • pp.745-754
    • /
    • 2007
  • This paper presents a unified modeling technique for tension stiffening effect in structural concrete members. The model is mathematically derived from the bond stress-slip relationships which account for splitting crack. The relationships in CEB-FIP Model Code 1990 and Eurocode 2 are employed together with the assumptions of a linear slip distribution along the interface and the uniform condition of concrete tensile contribution for the mid section of cracked member at the stabilized cracking stage. With these assumptions, a model of tension stiffening effect is proposed by accounting for the force equilibrium and strain compatibility condition associated to the steel strain and concrete contribution by bond stress. The model is applied to the test results available in literatures, and the predicted values are shown to be in good agreement with the experimentally measured behavior.

FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams (합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델)

  • Kwak, Hyo-Gyoung;Hwang, Jin-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제23권1호
    • /
    • pp.95-110
    • /
    • 2010
  • A numerical model to simulate bond-slip behavior of composite beam bridges is introduced in this paper. Assuming a linear bond stress-slip relation along the interface between the slab and girder, the slip behavior is implemented into a finite element formulation. Adopting the introduced model, the slip behavior can be taken account even in a beam element which is composed of both end nodes only. Governing equation of the slip behavior, based on the linear partial interaction theory, can be determined from the force equilibrium and a constant curvature distribution across the section of a composite beam. Since the governing equation for the slip behavior requires the moment values at both end nodes, the piecewise linear distribution of the constant bending moment in an element is assumed. Analysis results by the model are compared with numerical results and experimental values, and load-displacement relations of composite beams were then evaluated to verify the validity of the proposed model.

Evaluation of interest rate-linked DLSs

  • Kim, Manduk;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • 제29권1호
    • /
    • pp.85-101
    • /
    • 2022
  • Derivative-linked securities (DLS) is a type of derivatives that offer an agreed return when the underlying asset price moves within a specified range by the maturity date. The underlying assets of DLS are diverse such as interest rates, exchange rates, crude oil, or gold. A German 10-year bond rate-linked DLS and a USD-GBP CMS rate-linked DLS have recently become a social issue in Korea due to a huge loss to investors. In this regard, this paper accounts for the payoff structure of these products and evaluates their prices and fair coupon rates as well as risk measures such as Value-at-Risk (VaR) and Tail-Value-at-Risk (TVaR). We would like to examine how risky these products were and whether or not their coupon rates were appropriate. We use Hull-White Model as the stochastic model for the underlying assets and Monte Carlo (MC) methods to obtain numerical results. The no-arbitrage prices of the German 10-year bond rate-linked DLS and the USD-GBP CMS rate-linked DLS at the center of the social issue turned out to be 0.9662% and 0.9355% of the original investment, respectively. Considering that Korea government bond rate for 2018 is about 2%, these values are quite low. The fair coupon rates that make the prices of DLS equal to the original investment are computed as 4.76% for the German 10-year bond rate-linked DLS and 7% for the USD-GBP CMS rate-linked DLS. Their actual coupon rates were 1.4% and 3.5%. The 95% VaR and TVaR of the loss for German 10-year bond rate-linked DLS are 37.30% and 64.45%, and those of the loss for USD-GBP CMS rate-linked DLS are 73.98% and 87.43% of the initial investment. Summing up the numerical results obtained, we could see that the DLS products of our interest were indeed quite unfavorable to individual investors.

Bond behavior between concrete and prefabricated Ultra High-Performance Fiber-Reinforced Concrete (UHPFRC) plates

  • Mansour, Walid;Sakr, Mohammed A.;Seleemah, Ayman A.;Tayeh, Bassam A.;Khalifa, Tarek M.
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.305-316
    • /
    • 2022
  • Externally bonded ultrahigh performance fiber-reinforced concrete (UHPFRC) is commonly used as a strengthening material for reinforced concrete (RC) structures. This study reports the results of an experimental program investigating the bonding behavior between concrete and prefabricated UHPFRC plates. The overall experimental program is consisting of five RC specimens, which are strengthened using the different lengths and widths of prefabricated UHPFRC plates. These specimens were analyzed using the pull-pull double-shear test. The performance of each strengthened specimen is presented, discussed and compared in terms of failure mode, maximum load, load-slip relationship, fracture energy and strain distribution. Specimen C-25-160-300 which bonded along the whole width of 160 mm recorded the highest maximum load (109.2 kN) among all the analysed specimens. Moreover, a 3D numerical finite element model (FEM) is proposed to simulate the bond behavior between concrete and UHPFRC plates. Moreover, this study reviews the analytical models that can predict the relationship between the maximum bond stress and slip for strengthened concrete elements. The proposed FEM is verified against the experimental program and then used to test 36 RC specimens strengthened with prefabricated UHPFRC plates with different concrete grades and UHPFRC plate widths. The obtained results together with the review of analytical models helped in the formation of a design equation for estimating the bond stress between concrete and prefabricated UHPFRC plates.

Non-linear Structural Analysis of Composite Beams Considering the Bond-slip Effect (부착슬립 효과를 고려한 합성보의 비선형 해석)

  • Kwak, Hyo-Gyoung;Hwang, Jin-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.25-26
    • /
    • 2009
  • This paper deals with an introduction of a numerical model which is based on finite element concept to simulate bond-slip behavior in composite beams. Correlation studies between numerical results and experimental values were conducted to verify the model.

  • PDF

Transition-State Variation in the Solvolysis of Benzoyl Chlorides$^*$

  • Lee, Ik-Choon;Koo, In-Sun;Sohn, Se-Chul;Lee, Hai-Hwang
    • Bulletin of the Korean Chemical Society
    • /
    • 제3권3호
    • /
    • pp.92-98
    • /
    • 1982
  • Solvolysis reactions of some substituted benzoyl chlorides were studied in ethanol-water, ethanol-trifluoroethanol and methanol-acetonitrile mixtures. Results showed that the reaction proceeds via an $S_N2$ process in which bond formation is more advanced than bond cleavage. Comparison of the two models for predicting transition state variation indicated superior nature of the quantum mechanical model relative to the potential energy surface model.

Bond Immunization Model with Non-parallel shift Term-Structure using Partial Duration (비평행 이동 기간구조하에서 부분 듀레이션을 이용한 채권 면역 모델)

  • Park, Woo-Cheol;Choi, Gyung-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • 제26권3호
    • /
    • pp.249-256
    • /
    • 2000
  • Bond immunization model is used to minimize interest rate risk for investing in fixed-income market, the model equalizes asset and liability values using the duration which is the sensitivity of portfolio value with respect to the interest rate. However this model might generate an error in practice because the model is based on unreal hypothesis, so called "Parallel Shift Term Structure". In this paper, we use the neural network approach to overcome the parallel shift term structure and try to employ this term structure function to the traditional immunization model. Finally, we present some computational test results that show the superiority of the partial immunization model to the traditional methods.

  • PDF