• 제목/요약/키워드: Bolted Connection

검색결과 173건 처리시간 0.022초

다양한 다중 볼트 접합부의 거동에 대한 수치해석 (Numerical Behavior Analysis for the Various Multiple Bolted Connections)

  • 김광철
    • Journal of the Korean Wood Science and Technology
    • /
    • 제36권3호
    • /
    • pp.24-29
    • /
    • 2008
  • 수치해석 모델을 적용하여 다중 볼트 접합부의 거동을 해석하였다. 기본 모델로 축력-휨 요소를 가정하고 해석을 실시하였으며, 프레임재의 효과와 철물의 효과를 구분하여 해석을 실시하였다. 기존의 해석적인 방법은 볼트의 개수가 2개까지만으로 제한될 경우는 어느 정도 정확도를 보여 줄 수 있어서 많은 시간이 소요되는 수치해석적 방법보다 장점이 있을 수 있다. 하지만 현실적으로 사용되고 있는 현장의 조건은 그 이상의 볼트를 사용하고 있는 실정이다. 또한 현장에서 사용되고 있는 볼트의 배치 및 배열 형태를 기존의 해석적 방법을 적용하여 거동 분석을 실시한다는 것은 불가능하다. 이러한 현실 조건을 고려하여 볼트 접합부의 정확한 거동해석을 실시하기 위해서는 수치해석적 방법을 적용하는 방법 이외에는 대안이 없다. 다양한 다중 볼트 접합부에 대해 수치해석 모델을 적용한 결과 광범위하게 사용되고 있는 항복모델 등의 기존의 경험적 해석방법에 비해 현실적인 접합부 여건 반영이 수월하고 정확성에 있어서 우수함을 볼 수 있었다.

웨브를 볼트로 접합한 보 플랜지 절취형(RBS) 철골모멘트접합부의 내진설계 및 성능평가 (Seismic Design and Testing of Reduced Beam Section Steel Moment Connections with Bolted Web Attachment)

  • 이철호;김재훈
    • 한국강구조학회 논문집
    • /
    • 제17권6호통권79호
    • /
    • pp.689-697
    • /
    • 2005
  • 보 플랜지 절취형 (Reduced Beam Section, RBS) 내진 철골모멘트접합부의 최근 실험결과를 살펴보면, 보 웨브를 볼트 접합한 시험체는 보 웨브를 용접한 시험체에 비해 조기에 스캘럽에서 취성파단이 발생하는 열등한 내진성능을 나타냈다. 과거 여러 연구자들이 수행한 실험 결과 및 본 연구의 수치해석 결과를 종합해 볼 때, 이러한 접합부의 조기 취성파괴는 고전 휨이론과 매우 다른 응력전달 메카니즘에서 기인하는 웨브 볼트의 슬립, 그리고 재료의 인성이 가장 낮은 스캘럽 부근의 응력집중과 밀접한 관련이 있는 것으로 분석된다. 본 연구에서는 실험 및 해석결과를 바탕으로 RBS 접합부의 실제 응력전달경로에 부합되는 새로운 보 웨브 볼트 설계법 및 개선된 상세를 제시하고 실물대 실험을 통하여 방안의 타당성을 입증하였다.

2개의 볼트를 가지는 PFRP 볼트연결부의 볼트배치에 따른 강도평가 (Strength Evaluation of Bolt Arrangement in PFRP Bolted Connection with 2 Bolts)

  • 이영근;김선희;원용석;천진욱;신광열;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제5권3호
    • /
    • pp.17-22
    • /
    • 2014
  • Fiber reinforced plastic (FRP) structural shapes are readily available in civil engineering applications. Among many manufacturing techniques used for FRP structural shapes, pultrusion process is one of the most widely used techniques in civil engineering applications. Pultrusion is a manufacturing process for producing continuous lengths of reinforced polymeric plastic structural shapes with constant cross-section. Pultruded composites are attractive for structural applications because of their continuous mass production with excellent mechanical properties. This paper presents the results of investigations pertaining to the bolted connection with two bolts for the pultruded FRP (PFRP) structural members. PFRP bolted connection tests were conducted with end distance to bolt diameter ratio ($e_1/d_b$) and two types of bolt pattern such as horizontal (Pattern A) and vertical arrangement (Pattern B). As a result, it is found that the $e_1/d_b$ is recommended as the ratio of 4. In addition, it is also found that the bearing strengths at failure of the Pattern A and Pattern B have a similar value.

보 웨브를 볼트 접합한 RBS 철골모멘트접합부의 내진설계 (Seismic Design of Reduced Beam Section (RBS) Steel Moment Connections with Bolted Web Attachment)

  • 이철호;김재훈
    • 한국지진공학회논문집
    • /
    • 제8권3호
    • /
    • pp.87-96
    • /
    • 2004
  • 최근에 수행된 보 플랜지 절취형 (Reduced Beam Section, RBS) 내진 철골모멘트접합부의 실험 결과에 의하면, 보 웨브를 볼트 접합한 시험체는 보 웨브를 용접 접합한 시험체에 비해서 조기에 스캘럽을 가로지르는 취성파단이 발생하는 열등한 내진성능을 보였다. 실험결과에 의할 때, 이러한 접합부 취성파괴가 발생하는 주요 원인은 웨브 볼트의 슬립과 고전 휨이론에 의한 예측과는 전혀 다른 응력 전달메카니즘에 의한 스캘럽 부근의 응력집중 때문으로 사료된다. 이는 고전 휨이론에 기초한 전통적 보 웨브 볼트접합부의 설계법을 재검토할 필요가 있음을 시사하는 것이다. 본 연구를 통하여 고전 휨이론에 기초한 현행의 보 웨브 설계법에 문제가 있음을 지적하였다. 실험 및 해석결과를 바탕으로 RBS 접합부의 실제 응력전달경로에 부합되는 새로운 보 웨브 볼트접합 설계법을 제안하였다.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Component based moment-rotation model of composite beam blind bolted to CFDST column joint

  • Guo, Lei;Wang, Jingfeng;Wang, Wanqian;Ding, Zhaodong
    • Steel and Composite Structures
    • /
    • 제38권5호
    • /
    • pp.547-562
    • /
    • 2021
  • This paper aims to explore the mechanical behavior and moment-rotation model of blind bolted joints between concrete-filled double skin steel tubular columns and steel-concrete composite beams. For this type of joint, the inner tube and sandwiched concrete were additionally identified as basic components compared with CFST blind bolted joint. A modified moment-rotation model for this type of connection was developed, of which the compatibility condition and mechanical equilibrium were employed to determine the internal forces of basic components and neutral axis. Following this, load transfer mechanism among the inner tube, sandwiched concrete and outer tube was discussed to assert the action area of the components. Subsequently, assembly processes of basic coefficients in terms of their stiffness and resistances based on the component method by simplifying them as assemblages of springs in series or in parallel. Finally, an experimental investigation on four substructure joints with CFDST columns for validation purposes was carried out to capture the connection details. The predicted results derived from the mechanical models coincided well with the experimental results. It is demonstrated that the proposed mechanical model is capable of evaluating the complete moment-rotation relationships of blind bolted CFDST column composite connections.

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • 제9권2호
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

Experimental investigation of magnetic-mount PZT-interface for impedance-based damage detection in steel girder connection

  • Ryu, Joo-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • 제4권3호
    • /
    • pp.237-253
    • /
    • 2017
  • Among various structural health monitoring technologies, impedance-based damage detection has been recognized as a promising tool for diagnosing critical members of civil structures. Since the piezoelectric transducers used in the impedance-based technique should be bonded to the surface of the structure using bonding layers (e.g., epoxy layer), it is hard to maintain the as-built condition of the bonding layers and to reconfigure the devices if needed. This study presents an experimental investigation by using magnetically attached PZT-interface for the impedance-based damage detection in bolted girder connections. Firstly, the principle of the impedance-based damage detection via the PZT-interface device is outlined. Secondly, a PZT-interface attachment method in which permanent magnets are used to replace the conventional bonding layers is proposed. Finally, the use of the magnetic attraction for the PZT-interface is experimentally evaluated via detecting the bolt-loosening events in a bolted girder connection. Also, the sensitivity of impedance signatures obtained from the PZT-interface is analyzed with regard to the interface's material.

Analytical study of slant end-plate connection subjected to elevated temperatures

  • Zahmatkesh, F.;Osman, M.H.;Talebi, E.;Kueh, A.B.H.
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.47-67
    • /
    • 2014
  • Due to thermal expansion, the structural behaviour of beams in steel structures subjected to temperature increase will be affected. This may result in the failure of the structural members or connection due to extra internal force in the beam induced by the thermal increase. A method to release some of the thermally generated internal force in the members is to allow for some movements at the end supports of the member. This can be achieved by making the plane of the end-plate of the connection slanted instead of vertical as in conventional design. The present paper discusses the mechanical behaviour of beams with bolted slant end-plate connection under symmetrical gravity loads, subjected to temperature increase. Analyses have been carried out to investigate the reduction in internal force with various angles of slanting, friction factor at the surface of the connection, and allowable temperature increase in the beam. The main conclusion is that higher thermal increase is tolerable when slanting connection is used, which means the risk of failure of structures can be reduced.

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • 제11권4호
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.