• Title/Summary/Keyword: Bolt Joints

Search Result 144, Processing Time 0.021 seconds

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

Behaviour and design of bolted endplate joints between composite walls and steel beams

  • Li, Dongxu;Uy, Brian;Mo, Jun;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • v.44 no.1
    • /
    • pp.33-47
    • /
    • 2022
  • This paper presents a finite element model for predicting the monotonic behaviour of bolted endplate joints connecting steel-concrete composite walls and steel beams. The demountable Hollo-bolts are utilised to facilitate the quick installation and dismantling for replacement and reuse. In the developed model, material and geometric nonlinearities were included. The accuracy of the developed model was assessed by comparing the numerical results with previous experimental tests on hollow/composite column-to-steel beam joints that incorporated endplates and Hollo-bolts. In particular, the Hollo-bolts were modelled with the expanded sleeves involved, and different material properties of the Hollo-bolt shank and sleeves were considered based on the information provided by the manufacture. The developed models, therefore, can be applied in the present study to simulate the wall-to-beam joints with similar structural components and characteristics. Based on the validated model, the authors herein compared the behaviour of wall-to-beam joints of two commonly utilised composite walling systems (Case 1: flat steel plates with headed studs; Case 2: lipped channel section with partition plates). Considering the ease of manufacturing, onsite erection and the pertinent costs, composite walling system with flat steel plates and conventional headed studs (Case 1) was the focus of present study. Specifically, additional headed studs were pre-welded inside the front wall plates to enhance the joint performance. On this basis, a series of parametric studies were conducted to assess the influences of five design parameters on the behaviour of bolted endplate wall-to-beam joints. The initial stiffness, plastic moment capacity, as well as the rotational capacity of the composite wall-to-beam joints based on the numerical analysis were further compared with the current design provision.

Bolt-joint Structural Health Monitoring Technique Using Transfer Impedance (전달 임피던스를 이용한 볼트 접합부 구조 건전성 모니터링 기법)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.387-392
    • /
    • 2019
  • A technique was researched to detect bolt looseness using a transfer impedance technique (the dual piezoelectric material technique) for monitoring the structural health of a bolt joint. In order to use the single piezoelectric material technique, an expensive impedance analyzer should be used. However, in the transfer impedance technique, low-cost fault detection can be performed using a general function generator and a digital multimeter. A steel plate frame test specimen composed of bolt joints was fabricated, and the tightening torques of the bolts were loosened step by step. By using the transfer impedance method, the damage index was obtained. It was found that the presence of faults could be reasonably estimated using the damage index, which increased with the degree of bolt looseness. An experiment was performed on the same specimen using the single piezoelectric material technique, and the results showed a similar tendency. It could be possible to estimate the damage of a bolt joint at low cost by eliminating the expensive impedance analyzer. This method could be used effectively for structural health monitoring after carrying out a study to estimate the fault location and severity.

An Experimental and Analytical Studies on the Mechanical Behavior of High Tension Bolted Joints with Oversize Hole (과대공을 갖는 고장력 볼트 이음부의 역학적 거동에 관한 실험 및 해석적 연구)

  • Lee, Seung Yong;Park, Young Hoon;Cho, Sun Kyu;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.355-367
    • /
    • 1998
  • To evaluate the mechanical behavior and the compressive stress distribution in high tension bolted joints according to the size of bolt hole, the experimental and analytical studies are performed with enlarging bolt hole size. In experimental study, the static test is performed to measure the slip coefficient, and the fatigue test is also performed to evaluate the fatigue strength and failure pattern of fatigue crack. In analytical study, the compressive stress distribution is investigated by using the finite element analysis. From the result of experimental study, the slip coefficient and fatigue strength of the high tension bolted joints with oversize hole are not much different but somewhat it has decreased. These are because the size of bolt hole is larger than the holes of nominal size, therefore the width of clamping force is decreased and the compressive stress distribution area is smaller, this is certificated in the finite element analysis. In addition, the origin of fatigue crack in the oversize holes is closer to the hole than in the holes of nominal size, consequently it is investigated that the origin of fatigue crack is intimately associated with the compressive stress distribution which is formulated by the clamping force in both base metal and splice plate.

  • PDF

An Evaluation of Slip Coefficient in High Strength Bolt Joint using Zn/Al Metal Spray Corrosion Resistance Method (Zn/Al 금속용사 방식공법을 적용한 고력볼트 접합부의 미끄럼계수 평가)

  • Kim, Tae-Soo;Lee, Han-Seung;Tae, Sung-Ho;Ahn, Hyun-Jin;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.114-122
    • /
    • 2007
  • In high strength bolted joints, the corrosion of base material causes the reduction of slip resistance of the joints. In this study, tensile tests on slip-critical joints utilizing Zn/Al metal spraying corrosion resistance method were carried out in order to prevent the corrosion and meet the required mechanical characteristics of joints. In addition, slip coefficient and surface roughness were calculated. The key parameters were surface finishing condition and thickness of coating with the identical geometry in all specimens. From the results, it is found that the slip coefficient of the joints with coated finish after sand blast treatment as well as those of non-coated joints with only sand blast treatment were similar or superior to 0.45, which is a specification criteria of slip coefficient in friction-typed joints.

A Study on the Bearing Strength of Bolt Jointed Section for Composite Aircraft Radome Under Hygrothermal Environments (열습환경을 고려한 항공기용 레이돔 볼트 체결부의 베어링 강도에 관한 연구)

  • Kim, Ho Il;Ryu, Guh Yun;Kim, Joon;Kim, Kwang Min;Lee, Kyu Song;Park, Young Ju;Park, Byum Jun;Ryu, Hong Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.759-764
    • /
    • 2017
  • This research investigated the hygrothermal effect on the strength of bolt jointed section and moisture contents of composites exposed to hygrothermal environment for composite aircraft radome. The decrease in strength in the test environment is mainly attributed to the change in the material properties of the matrix due to temperature and moisture. The composite specimens were tested in three different environmental conditions: RTD(room temperature and dry), CTD(cold temperature and dry) and ETW(elevated temperature and wet). The failure mode of the bolt jointed composite specimens were studied using tests and finite element analysis. Finite element analysis reasonably predicted the failure load and mode of the joints. A reliability-based design was carried out for the bolt jointed composites of radome.

A Study on the Stability of Underground Structure considering the Orientation and the Stiffness of Discontinuity (불연속면의 경사와 강성을 고려한 지하구조물 안정성에 관한 연구)

  • Lee, Seung-Ho
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.65-74
    • /
    • 1997
  • Underground structures show different behaviors depending upon the space and the mechanical characteristics of discontinuities, such as joints, beddings, faults and shear zone. Desingning the rock structeres without considering the significance of these discontinuities can lead to false conclusions. This paper includes study on the following topics; the numerical analysis of continuous rock and discontinuous rock around a tunnel, the influences on shotcrete moment and rock-bolt axial force of tunnel due to different joint orientation and stiffness.

  • PDF

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

The Dynamic Characteristics of Bolt Jointed Plates Using the Finite Element Method (FEM에 의한 볼트 결합 판재의 동특성 해석)

  • 홍상준;김윤영;이동진;이석원;유정훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.990-998
    • /
    • 2004
  • There have been lots of efforts to analyze the dynamic characteristics of mechanical systems. However, it is difficult the know the dynamic characteristics of mechanical systems composed of many parts with joints. Specially, in case of a bolted Joint structure, no effective modeling method has been defined to acquire dynamic characteristics of the structure using the finite element (FE) analysis. In this research, a linear dynamic model is developed for bolted feints and large interfaces using con frusta method and linear spring elements, respectively. The developed modeling method for bolted joints is verified based on the experimental result.

Modeling and Vibration Analysis of Steering System (스티어링 시스템의 모델링 및 진동 해석)

  • 조준호;오재응;임동규;강성종;강성종
    • Journal of KSNVE
    • /
    • v.2 no.2
    • /
    • pp.125-134
    • /
    • 1992
  • In this study, ti identify the dynamic characteristics of automobile steering system which consists of many components and joints, each component combined structure was analyzed using commercial structural package, ANSYS. And, the finite element method for each component and modeling method of several joints universal joint, bolt joint, bearing, etc. were studied. On the other hand, the experimental modal analysis was performed to compare with the results of the finite element analysis and joint modeling. The result shows very close agreement between two analysis. Also, it was found that the steeing column used in this experiment does not effect the low frequency mode of entire system. In addition, we found that constraint equations need to be considered in modeling universal joint. Since the stiffness effect of Urethane around wheel could be ignored, it can be modeled only with mass effect. In the end, it was found that dynamic characteristics of the entire steerintg system depends mainly upon the wheel characteristics.

  • PDF