• 제목/요약/키워드: Bolt Joints

검색결과 143건 처리시간 0.023초

유한 요소 접촉 해석법에 의한 나사 체결부 설계 개선에 관한 연구 (A parametric study of bolt-nut joints by the method of finite element contact analysis)

  • 이병채;김영곤
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.353-361
    • /
    • 1989
  • 본 논문에서는 유한 요소법을 이용하여 접촉을 고려한 나사 체결 문제를 해석하고 여러 다른 체결조건이 각 나사산에 걸리는 하중 분담율에 미치는 영향을 살펴보고, 이 하중 분담율이 보다 균일화 될 수 있는 체결 조건을 찾고, 또 그때의 응력 분포를 살펴보는 것을 목적으로 한다.

Effect of bond and bidirectional bolting on hysteretic performance of through bolt CFST connections

  • Ajith, M.S.;Beena, K.P.;Sheela, S.
    • Earthquakes and Structures
    • /
    • 제19권5호
    • /
    • pp.315-329
    • /
    • 2020
  • Through bolt connections in Concrete Filled Steel Tubes (CFSTs) has been proved to be good in terms of seismic performance and constructability. Stiffened extended end plate connection with full through type bolt helps to avoid field weld altogether, and hence to improve the quality of joints. An experimental study was conducted on the hysteretic performance of square interior beam-column connections using flat extended end plates with through bolt. The study focuses on the effect of the bond between the tie rod and the core concrete on the cyclic performance of the joint. The study also quantifies how much the interior joint is getting strengthened due to the confinement effect induced by bi-directional bolting, which is widely used in 3D moment resisting frames. For a better understanding of the mechanism and for the prediction of shear capacity of the panel zone, a mathematical model was generated. The various parameters included in the model are the influence of axial load, amount of prestress induced by bolt tightening, anchorage, and the concrete strut action. The study investigates the strength, stiffness, ductility, and energy dissipation characteristics. The results indicate that the seismic resistance is at par with American Institute of Steel Construction (AISC) seismic recommendations. The bidirectional bolting and bond effect have got remarkable influence on the performance of joints.

복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구 (Effect of Micro-bolt Reinforcement for Composite Scarf Joint)

  • 이광은;성정원;권진회
    • Composites Research
    • /
    • 제32권1호
    • /
    • pp.37-44
    • /
    • 2019
  • 스카프 접착 조인트를 마이크로 볼트로 보강하였을 때, 볼트의 보강효과를 얻을 수 있는지를 시험으로 연구하였다. 스카프 형상에 따른 조인트 보강효과를 확인하기 위해 3가지 스카프비(1/10, 1/20, 1/30)를 고려하였다. 접착면적에 따른 핀의 밀도를 동일하게 유지하기 위해, 1/10, 1/20, 1/30 스카프비를 가지는 조인트에 각각 16, 32, 48개의 볼트를 보강하였다. 기준값을 획득하기 위해 접착제로만 체결된 조인트와 마이크로 볼트만 사용한 조인트에 대한 시험도 수행하였다. 시험 결과 접착제만 적용한 경우, 각 스카프비(1/10, 1/20, 1/30)에 따른 파손하중은 29.7, 39.6, 44.8 kN로 나타났다. 마이크로 볼트로 보강한 경우 파손하중은 스카프비에 따라 각각 28.4, 37.2, 40.1 kN으로 나타났는데, 순수 접착 조인트 파손하중의 96, 94, 90%에 해당한다. 마이크로 볼트만 사용한 경우, 파손하중은 접착 조인트 인장강도의 13-25%에 불과하였다. 스카프비 1/10 조인트의 피로시험 결과 접착제와 볼트를 동시에 사용한 하이브리드 조인트의 피로강도가 접착제만 사용한 경우의 피로강도보다 증가하였지만, 증가율은 2-3%로 미미하였다. 본 연구를 통해 박리응력이 파손의 주원인이 되는 구조물에서와 달리, 전단응력이 파손의 주원인이 되는 스카프 조인트의 경우 마이크로 볼트의 보강효과는 나타나지 않는 것을 확인하였다.

고장력볼트 T-인장이음의 피로거동에 관한 실험적 연구 (An Experimental Study on the Fatigue Behavior of T-Type Tension Joints with High Tension Bolt)

  • 이승용;최준혁
    • 한국강구조학회 논문집
    • /
    • 제28권6호
    • /
    • pp.459-465
    • /
    • 2016
  • 본 연구에서는 인장이음에 대한 반복하중의 영향을 파악하기 위하여 단순 인장이음을 대상으로 피로시험을 수행하였다. 인장이음의 볼트체결에 따른 축력과 작용하중에 의한 축력의 변화를 측정하였고 반복하중에 의한 볼트의 축력과 파괴양상, 이음의 피로강도를 조사하였다. 인장이음의 구조 상세 변수는 플랜지 두께와 고장력 볼트의 직경으로서 이들의 조합에 따라 볼트와 연결부의 강성이 달라지도록 하였다. 피로시험결과, 반복하중을 받는 인장이음의 파괴모드는 EC3에서 제시하고 있는 정적 파괴모드별 극한하중을 이용하여 평가될 수 있었다. 인장이음의 피로강도는 지레작용을 고려하지 않은 EC3(36)의 피로강도보다 상당히 안전측의 결과로 나타났다. 그러나, 지레작용에 의한 부가축력은 볼트 축력의 증가를 일으키기 때문에 피로강도에 대한 신중한 평가가 필요하다.

Detection and location of bolt group looseness using ultrasonic guided wave

  • Zhang, Yue;Li, Dongsheng;Zheng, Xutao
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.293-301
    • /
    • 2019
  • Bolted joints are commonly used in civil infrastructure and mechanical assembly structures. Monitoring and identifying the connection status of bolts is the frontier problem of structural research. The existing research is mainly on the looseness of a single bolt. This article presents a study of assessing the loosening/tightening health state and identifying the loose bolt by using ultrasonic guided wave in a bolt group joint. A bolt-tightening index was proposed for evaluating the looseness of a bolt connection based on correlation coefficient. The tightening/loosening state of the bolt was simulated by changing the bolt torque. More than 180 different measurement tests for total of six bolts were conducted. The results showed that with the bolt torque increases, value of the proposed bolt-tightening index increases. The proposed bolt-tightening index trend was very well reproduced by an analytical expression using a function of the torque applied with an overall percentage error lower than 5%. The developed damage index based on the proposed bolt-tightening index can also be applied to locate the loosest bolt in a bolt group joint. To verify the effectiveness of the proposed method, a bolt group joint experiment with different positions of bolt looseness was performed. Experimental results show that the proposed approach is effective to detect and locate bolt looseness and has a good prospect of finding applications in real-time structural monitoring.

Vision-based technique for bolt-loosening detection in wind turbine tower

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Choi, Sang-Hoon;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.709-726
    • /
    • 2015
  • In this study, a novel vision-based bolt-loosening monitoring technique is proposed for bolted joints connecting tubular steel segments of the wind turbine tower (WTT) structure. Firstly, a bolt-loosening detection algorithm based on image processing techniques is developed. The algorithm consists of five steps: image acquisition, segmentation of each nut, line detection of each nut, nut angle estimation, and bolt-loosening detection. Secondly, experimental tests are conducted on a lab-scale bolted joint model under various bolt-loosening scenarios. The bolted joint model, which is consisted of a ring flange and 32 sets of bolt and nut, is used for simulating the real bolted joint connecting steel tower segments in the WTT. Finally, the feasibility of the proposed vision-based technique is evaluated by bolt-loosening monitoring in the lab-scale bolted joint model.

금속 링 개스킷이 삽입된 Class 900 플랜지 조인트의 거동에 관한 연구 (A Study on the Behavior of Class 900 Flange Joints with Metal Ring Gaskets)

  • 이민영;정두형;김병탁
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.34-41
    • /
    • 2018
  • A flange joint is a pipe connection used to prevent the leakage of high-pressure fluids by inserting a gasket and tightening the bolts. Among several kinds of gaskets available, metal ring type joint gaskets are most widely used in conditions that require high-temperature and high-pressure fluid flow, such as oil pipelines, gas pipes, pumps, valve joints, etc. The purpose of this study is to investigate the contact pressure and stress characteristics closely related to the sealing performance of Class 900 flange joints used in high temperature and high pressure environments. The dimensions of flange joints with five different nominal pipe sizes were determined with reference to those specified in ASME 16.5. The metal ring gaskets inserted in the joints were octagonal and oval gaskets. The bolt tensile forces calculated from the tightening torques were input as the bolt pretension loads in order to determine the contact pressure and stress levels after fastening. Loading was composed of three steps, including the fastening step, and different amounts of applied pressures were used in each analysis to investigate the effect of fluid pressure on the contact force of the joints. A general-purpose software, ANSYS 17.2, was used for the analysis.

Finite element simulations on the ultimate response of extended stiffened end-plate joints

  • Tartaglia, Roberto;D'Aniello, Mario;Zimbru, Mariana;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.727-745
    • /
    • 2018
  • The design criteria and the corresponding performance levels characterize the response of extended stiffened end-plate beam-to-column joints. In order to guarantee a ductile behavior, hierarchy criteria should be adopted to enforce the plastic deformations in the ductile components of the joint. However, the effectiveness of thesecriteria can be impaired if the actual resistance of the end-plate material largely differs from the design value due to the potential activation of brittle failure modes of the bolt rows (e.g., occurrence of failure mode 3 in the place of mode 1 per bolt row). Also the number and the position of bolt rows directly affect the joint response. The presence of a bolt row in the center of the connection does not improve the strength of the joint under both gravity, wind and seismic loading, but it can modify the damage pattern of ductile connections, reducing the gap opening between the end-plate and the column face. On the other hand, the presence of a central bolt row can influence the capacity of the joint to resist the catenary actions developing under a column loss scenario, thus improving the joint robustness. Aiming at investigating the influence of these features on both the cyclic behavior and the response under column loss, a wide range of finite element analyses (FEAs) were performed and the main results are described and discussed in this paper.

Seismic behaviour of gravity load designed flush end-plate joints

  • Cassiano, David;D'Aniello, Mario;Rebelo, Carlos
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.621-634
    • /
    • 2018
  • Flush end-plate (FEP) beam-to-column joints are commonly used for gravity load resisting parts in steel multi-storey buildings. However, in seismic resisting structures FEP joints should also provide rotation capacity consistent with the global structural displacements. The current version of EN1993-1-8 recommends a criterion aiming at controlling the thickness of the end-plate in order to avoid brittle failure of the connection, which has been developed for monotonic loading conditions assuming elastic-perfectly plastic behaviour of the connection's components in line with the theory of the component method. Hence, contrary to the design philosophy of the hierarchy of resistances implemented in EN1998-1, the over strength and the hardening of the plastic components are not directly accounted for. In light of these considerations, this paper describes and discusses the results obtained from parametric finite element simulations aiming at investigating the moment-rotation response of FEP joints under cyclic actions. The influence of bolt diameter, thickness of end-plate, number of bolt rows and shape of beam profile on the joint response is discussed and design requirements are proposed to enhance the ductility of the joints.

Simplified criteria for finite element modelling of European preloadable bolts

  • D'Aniello, Mario;Cassiano, David;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.643-658
    • /
    • 2017
  • High strength preloadable bolt assemblies are commonly adopted in beam-to-column bolted connections. Nowadays, two systems of high strength preloadable grade 10.9 bolt assembly are recommended in Europe for structural applications, namely HR and HV, which are characterized by different failure modes. Recently, experimental tests performed on HR and HV bolt assemblies highlighted that the type of bolt assembly may significantly influence the joint response. Therefore, the accuracy of numerical modelling of bolt assemblies is crucial to simulate effectively the non-linear behaviour of bolted joints with either failure mode 2 or mode 3 of the bolt rows. In light of these considerations, this present paper describes and discusses some modelling criteria for both HR and HV bolts to be implemented in 3D finite element models by finite element analysis and structural designers. The comparison between the calibrated models and experimental results shows the accuracy of the proposed assumptions in simulating all stages of assembly tensile response.