• Title/Summary/Keyword: Boiling Phenomenon

Search Result 70, Processing Time 0.032 seconds

Pool Boiling Heat Transfer Charcteristics of Low-Fin Tubes in CFC11, HCFC123 and HCFC141b (CFC11, HCFC123, HCFC141b 풀내에서 낮은 핀관의 비등 열전달특성)

  • 김주형;곽태희;김종보
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2316-2327
    • /
    • 1995
  • Experimental results from nucleate pool boiling heat transfer with various finned tubes in CFC11, HCF123 and HCFC141b are reported. One plain tube and four low fin tubes of various fin densities were tested in an attempt to find out the optimum fin density in the heat flux range of 10-60 kW/m$^{[-992]}$ at near atmospheric pressure. The results indicated that CFC11 showed the highest heat transfer coefficients. Its alternatives, HCFC123 and HCFC141b, showed 3-5% lower heat transfer coefficients than those of CFC11 at the same heat flux. As the fin density increases, so does the heat transfer surface area. Measured heat transfer coefficients, however, do not necessarily always increase as the fin density increases. This unique phenomenon seems to be caused by the coalescence of the bubblers that prevent the cool liquid from entering into the fin valleys. For all the refrigerants tested, the optimum fin density yielding the highest performance was 28 fins per inch confirming the previous results by other researchers.

Study of Dechlorination Sorbent for Pyrolysis of PVC Containing Wastes (PVC 함유 폐기물의 열분해를 위한 탈염흡수제 연구)

  • Kim, Seong-Soo;Park, Sung-Youl
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.233-242
    • /
    • 2013
  • The influences of Ca and Fe based oxides as dechlorination sorbents on the product distribution, boiling point distribution of liquid product, concentration of Cl of the products from the pyrolysis of PVC containing combustible wastes were investigated. With Fe based oxides as the sorbents, the yield of liquid product remarkably decreased whereas the decrease of the boiling point distribution of the liquid product was not noticeable. This phenomenon indicated that Fe based oxides worked as catalysts with weak catalytic activity. With Ca based oxides as the sorbents, the yield of liquid product did not decrease and the boiling point distribution of liquid product did not change significantly, but the dechlorination performance of these was much better than that with Fe based oxides.

An Analysis of Flashing Jet Behavior of Pressurized Water (물제트의 노즐 입구온도변화에 따른 증발특성 해석)

  • KIM, BOOSANG;KIM, HAKDEOK;LIM, HEECHANG;SONG, JUHUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.585-592
    • /
    • 2019
  • In this study, a flashing boiling phenomenon of pressurized water jet was numerically studied and validated against an experimental data in the literatures. The volume of fluid (VOF) technique was used to consider two-phase behavior of water, while the homogeneous relaxation model (HRM) model was used to provide the velocity of phase change. During the flashing boiling through a nozzle, a mach disk was observed near nozzle exit because of pressure drop resulting from two-phase under-expansion. The flashing jet structure, local distributions of temperature/vapor volume fraction/velocity, and position of the mach disk were examined as nozzle inlet temperature changed.

A Power-Generation System using Cavitation jet flow (케비테이션 제트 유동을 이용한 발전 시스템)

  • Na, Jeoungsu;Lee, Kangju;Lee, Bongyeol;Joo, Namsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.162.1-162.1
    • /
    • 2010
  • Cavitation phenomenon has long been a difficult problem that regarded as negative event to fluid machines or industrial facilities. In the latest, however, some engineers became to understand the power of cavitation and use it to cleaning wall after developing cavitation nozzle. In this paper, we introduce new concept for power-generation system using cavitation jet flow maid by nozzle and impulse turbine in vacuum condition. The vacuum needed to make cavitation is generated naturally by Torricelli's vacuum, 10.23m effective head drop without additional power. We analyzed water's boiling and the steam's mean free path according to vacuum purity levels for nozzles and turbine blades. The nozzles make water accelerate in the neck and boil in expansion section of the nozzles. The shape of the impulse turbine is designed for absorption of the molecule's kinetic energy of the steam.

  • PDF

Study on the Single Bubble Growth During Nucleate Boiling at Saturated Pool (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim Jeongbae;Lee Han Choon;Oh Byung Do;Kim Moo Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.169-179
    • /
    • 2005
  • Nucleate boiling experiments on heating surface of constant wall temperature were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition of heating surface and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames per second using a high-speed CCD camera synchronized with the heat flow rate measurements. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous experimental results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later (thermal) respectively. The comparisons showed good agreement in the initial and thermal growth regions. In the initial growth region including surface tension controlled, transition and inertia controlled regions as divided by Robinson and Judd, the bubble growth rate showed that the bubble radius was proportional to $t^{2/3}$ regardless of working fluids and heating conditions. And in the thermal growth region as also called asymptotic region, the bubble showed a growth rate that was proportional to $t^{1/5}$, also. Those growth rates were slower than the growth rates proposed in previous analytical analyses. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool condition. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

Study on the single bubble growth at saturated pool boiling (포화상태 풀비등시 단일기포의 성장에 관한 연구)

  • Kim, Jeong-Bae;Lee, Han-Choon;Oh, Byung-Do;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1933-1938
    • /
    • 2004
  • Nucleate boiling experiments with constant wall temperature of heating surface were performed using R113 for almost saturated pool boiling conditions. A microscale heater array and Wheatstone bridge circuits were used to maintain a constant wall temperature condition and to measure the heat flow rate with high temporal and spatial resolutions. Bubble images during the bubble growth were taken as 5000 frames a sec using a high-speed CCD camera synchronized with the heat flow rate measurements. The geometry of the bubble during growth time could be obtained from the captured bubble images. The bubble growth behavior was analyzed using the new dimensionless parameters for each growth regions to permit comparisons with previous results at the same scale. We found that the new dimensionless parameters can describe the whole growth region as initial and later respectively. The comparisons showed good agreement in the initial and thermal growth regions. The required heat flow rate for the volume change of the observed bubble was estimated to be larger than the instantaneous heat flow rate measured at the wall. Heat, which is different from the instantaneous heat supplied through the heating wall, can be estimated as being transferred through the interface between bubble and liquid even with saturated pool conditions. This phenomenon under a saturated pool condition needs to be analyzed and the data from this study can supply the good experimental data with the precise boundary condition (constant wall temperature).

  • PDF

Description and Discussion of the Current State of the Knowledge about the Leidenfrost Phenomenon (Leidenfrost 현상에 관한 최근 기술현황분석)

  • Moon Ki Chung;Young Whan LEE
    • Nuclear Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.204-218
    • /
    • 1982
  • The purpose of this report is to describe and discuss the current state of the knowledge about the Leidenfrost phenomenon which is a heavily studied subject in the field of boiling heat transfer. The strong interest is due to reactor safety considerations since it is desirable to obtain a better understanding of the physical mechanisms involved in the rewetting of high temperature surface after a loss of coolant accident. Brief survey of the theoretical and experimental results from available open literatures indicates that considerable discrepancy exists in the prediction of the Leidenfrost temperature at the elevated pressures and more investigations are needed in this area.

  • PDF

A Study of Droplets and Icing Characteristics on Injector in a Liquid Phase LPG Injection Engine (액상분사식 LPG엔진 인젝터의 후적 및 아이싱 특성에 관한 연구)

  • Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong;Park, Cheol-Woong
    • Journal of ILASS-Korea
    • /
    • v.12 no.1
    • /
    • pp.38-44
    • /
    • 2007
  • Since the Liquid Phase LPG injection (LPLI) system has Advantages in power generation and emission characteristics compared to the mixer-type fuel-supply system, a variety of studies regarding LPLi system has been conducted and its applications are made in automobile industry. However, the heat extraction due to the evaporation of liquid fuel, causes not only a post-accumulation of fuel but also an icing phenomenon which is a frost of moisture in the air around the nozzle tip. Since there exists a difficulty in the accurate control of air fuel ratio in both fuel supply systems, it can result in poor engine performance and a large amount of harmful emissions. This research examines the characteristics of icing phenomenon and develops anti-icing bushing to prevent an icing on the surface of the injection tip. It was found that n-butane, which has a relatively high boiling point ($-0.5^{\circ}C$), was a main species of post-accumulation. Also the results show that the post-accumulation problem was allevaited the utilization of a large inner to outer bore ratio and smooth surface roughness. In addition, an icing phenomenon and its formation process were found to be mainly affected by the humidity and the temperature of inlet air in an inlet duct. Also, it was observed that an icing phenomenon is lessened using aluminum bushing whose end coincides with the end of fuel injection tip in length.

  • PDF

Transient cooling experiments with a cooper block in a subcooled flow boiling system (과냉비등류에 있어서 동블록을 이용한 과도적 냉각실험)

  • 정대인;김경근;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.72-79
    • /
    • 1987
  • When the wall temperature is very high, a stable vapor film covers the heat transfer surface. The vapor film creates a strong thermal resistance when heat is transferred to the liquid though it. This phenomenon, called "film boiling" is very important in the heat treatment of metals, the design of cryogenic heat exchangers, and the emergency cooling of nuclear reactors. In the practical engineering problems of the transient cooling process of a high temperature wall, the wall temperature history, the variation of the heat transfer coefficients, and the wall superheat at the rewetting points, are the main areas of concern. These three areas are influenced in a complex fashion such factors as the initial wall temperature, the physical properties of both the wall and the coolant, the fluid temperature, and the flow state. Therefore many kinds of specialized experiments are necessary in the creation of precise thermal design. The object of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The block was 240 mm high and 79 mm O.D.. The coolant flowed throuogh the center of a 10 mm diameter channel in the copper block. In the copper block, three sheathed thermocouples were placed in a line perpendicular to the flow. These thermocouples were used to take measurements of the temperature histories of the copper block.

  • PDF

Analysis of the change in appearance according to the hardening method of leather (가죽의 경화방법에 따른 외형변화 분석)

  • Youshin, Park
    • Journal of Fashion Business
    • /
    • v.26 no.5
    • /
    • pp.122-134
    • /
    • 2022
  • This study is conducted on hardening leather with improved firmness and stability of shape, based on research on types and thickness of leather. The purpose of this study is to test the physical properties of the leather for molding to prepare the foundation for leather molding based on the test results using four methods by thickness of Vegetable and Split. The tests were conducted using a total of five leather types, including three types of vegetable leathers and two types of split, by thickness. Based on the testing method for leathers in KS M 6882, the tests were performed at 27℃ with relative humidity of 65±20%. The samples were prepared with cowhide, size 9cm× 2cm. The measurement parameters are length and width. thickness, volume, mass, density. Regarding the hardening treatment method, changes in appearance and major physical characteristics of leather were reviewed by soaking in hot water, dry heating, hammering, waxing, and olive oil coating. The study results are as follows. In planar works, it is judged that hardening work using a hammer is more suitable for stiffness or density in order to prevent easy breakage with adult muscle density, rather than boiling water or baking. In conclusion, there is no curling, soot, or breaking phenomenon, and the densest curing method is 50℃ for 20 sec of V2 and 75℃ for 60 sec of V2 in boiling water. The combination of paraffin treatment improve waterproof and quality.