• Title/Summary/Keyword: Boiler System Control.

Search Result 209, Processing Time 0.028 seconds

Fault Tolerant Control for Nonlinear Boiler System (비선형 보일러 시스템에서의 이상허용제어)

  • Yoon, Seok-Min;Kim, Dae-Woo;Lee, Myung-Eui;Kwon, O-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

A Design of Model Following Optimal Multivariable BOiler-Turbine H_\infty Control System using Genetic Algorithm (유전 알고리즘을 이용한 모델 추종형 최적 다변수 보일러-터빈 H_\infty제어 시스템의 세계)

  • Hwang, Hyeon-Jun;Kim, Dong-Wan;Park, Jun-Ho;Hwang, Chang-Seon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Multivarialbe Boiler-Turbine H_\infty Control System Genetic Algorithm Weighting Functions $W_1$(s), $W_2$(s), and design parameter $\gamma$ that are given by Glover-Doyle algorithm, to optimally follow the output of reference model. The first method to do this is that the gains of weighting functions $W_1$(s), $W_2$(s), and design parameter are optimized simultaneously by genetic algorithm with the tournament method that can search more diversely, in the search domain which guarantees the robust stability of system. And the second method is that not only by genetic algorithm with the roulette-wheel method that can search more fast, in that search domain. The boiler-turbine H_\infty control system designed by theabove second method has not only the robust stability to a modeling error but also the the better command tracking preformance than those of the H_\infty control system designed by trial-and-error method and the above first method. Also, this boiler-turbine H_\infty control system has the better performance than that of the LQG/LTR contro lsystem. The effectiveness of this boiler-turbineH_\infty control system is verified by computer simulation.

  • PDF

A Sensor Fault Detection for Boiler-Turbine Control System (보일러-터빈 제어시스템의 측정기 고장검출)

  • Yoo, Seog Hwan
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • This paper deals with a design of observer based fault detection filter for a boiler-turbine control system. The goal is to present a method for rapid sensor fault detection in order to enhance the reliability of boiler-turbine operation in the thermal power plant. Our fault detection filter can be designed via solutions of linear matrix inequalities. In order to demonstrate the efficacy of our design method, numerical simulations are provided.

Constrained multivariable model based predictive control application to nonlinear boiler system (제약조건을 갖는 다변수 모델 예측 제어기의 비선형 보일러 시스템에 대한 적용)

  • 손원기;이명의;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.160-163
    • /
    • 1996
  • This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

The improvement for steam temperature control at Boryung bituminous coal-fired drum boiler type thermal power plant (유연탄연소 드럼타입 보일러를 채택한 발전프랜트의 효율적 온도제어에 관한 연구)

  • 류홍우;황재호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.693-696
    • /
    • 1988
  • This paper is investigated on the improvement for steam temperature control at Boryung coal-fired drum boiler type thermal power plant. The steam temperatur control has been mainly operated by the feedback controllers. Automatic controllers are bounded and difficult. Because boiler system is nonlinear and the system time delay is very large. Optimal regulators including predictive feedforward and differentiate control are synthesized and some improved output results are presented.

  • PDF

A Case Study on Application of Fault Tolerant Control System to Boiler Controller in Power Plant (발전소 보일러 제어기에 대한 내고장성 제어 시스템의 적용에 관한 연구)

  • ;;;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.1
    • /
    • pp.10-19
    • /
    • 1990
  • A fault tolerant control system, in which a digital back-up controller system is added on the existing analog control system, is developed for enhancing reliability of boiler control system in power plant. The digital back-up controller system(DBCS) has a multi-processor structure with capabilities of fault diagnosis, back-up control, self test, and graphic monitoring. Specifically, switching mechanism composed of expandable modules is designed so that back-up controller takes over any faulty control loops and the number of back-up control loops is determined as that of simultaneous faults. A process simulator that simulates the boiler analog control system is developed for safety test and performance evaluation prior to real plant application. DBCS is installed at the Ulsan thermal power plant, and fault tolerant control performance is assured under the faults that some controller modules are pulled out.

  • PDF

A Study on Interpolated Step Response Model of Dynamic Matrix Control(DMC) for a Boiler-Turbine System of Fossil Power Plant (계단 응답 모델의 보간을 이용한 화력발전 보일러-터빈 시스템의 동역학 행렬제어(DMC)에 관한 연구)

  • Moon, Un-Chul;Oh, Seok-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.109-115
    • /
    • 2008
  • This paper proposes an adaptive Dynamic Matrix Control (DMC) and its application to boiler-turbine system In a conventional DMC, object system is described as a Step Response Model (SRM). However, a nonlinear system is not effectively described as a single SRM. In this paper, nine SRMs at various operating points are prepared. On-line interpolation is performed at every sampling step to find the suitable SRM. Therefore, the proposed adaptive DMC can consider the nonlinearity of boiler-turbine system. The simulation results show satisfactory results with a wide range operation of the boiler-turbine system.

Design of adaptive controllers for the boiler system (보일러를 위한 적응 제어기 설계)

  • 박태건;류지수;이기상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.337-340
    • /
    • 1997
  • In this paper we propose direct and indirect adaptive controllers for a nonlinear multivariable steam generating unit(200MW). In the direct adaptive scheme the estimation of the controller parameter are achieved from tracking error, while in the indirect approach the unknown parameter of the boiler system is estimated by the Hopfield network-based identifier. The performance of two proposed adaptive controllers is shown through simulations.

  • PDF

Design of Receding Horizon Control for Boiler-Turbine Systems (보일러-터빈 시스템을 위한 이동구간 예측제어기 설계)

  • Lee, Young-I.;Lee, Gi-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.441-445
    • /
    • 1997
  • In this paper, we suggest a design scheme of receding horizon predictive control(RHPC) for boiler-turbine systems whose dynamics are given in nonlinear equations. RHPC is designed for linear state space models which are obtained at a nominal operating point of the boiler-turbine system. In this consideration, the boiler is operated in a sliding pressure mode, in which the reference value of drum pressure is changing according to the electrical power generation. The reference values of the system outputs are prefiltered before they are fed to the RHPC in order to compensate the linearization errors. Simulation results show that the proposed controller provides acceptable performances in both of the cases of 'steep and small changes' and 'slow and large changes' of power demand and yields the effect of modest coordination of conventional PID schemes such as boiler-following and turbine-following control.

  • PDF

A Study on Design of Optimal Model Following Boiler-Turbine Control System Using Genetic Algorithms (유전 알고리즘을 이용한 최적 모델 추종형 보일러-터빈 제어 시스템의 설계에 관한 연구)

  • Ryu, C.S.;Hwang, H.J.;Kim, D.W.;Park, J.H.;Hwang, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.446-448
    • /
    • 1997
  • The aim of this paper is to introduce a method designing the optimal model following boiler-turbine control system using genetic algorithms. This boiler-turbine control system is designed by applying genetic algorithms with reference model to the optimal determination of weighting matrices Q, R that are given by LQ regulator problem. These weighting matrices are optimized simultaneously in the search domain selected adequately. The effectiveness of this boiler-turbine control system is verified by computer simulation.

  • PDF