• Title/Summary/Keyword: Boiler System Control.

Search Result 209, Processing Time 0.031 seconds

Analysis of mill & burner control at thermal power plant (발전소 MBC(Mill & Burner Control) 로직 분석)

  • Shin, Man-Su;Kim, Byeng-Cheol;Choe, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1662_1663
    • /
    • 2009
  • There are generator/turbine/boiler control system in the thermal power plant. By the way, the manufacturers are different each other in many cases. Therefore there were many difficulties in interface and maintenance of power plant. So, we have been developing the integration of all control system in a single manufacturer. Mill & burner control is analyzed in this paper.

  • PDF

Study on application of domestic development DCS for S/H temp in the power plant (발전소 과열증기 온도제어 시스템의 국산 DCS 적용에 관한 연구)

  • 박익수;김은기;박성혁;이기원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.292-296
    • /
    • 1992
  • There are lots of disturbance in the super heater temperature control system of power plant boiler as follows. 1.Burner light off. 2.Excess Air. 3.Burner tilt. 4.G.R fan flow. Temperature control system of super heater in the power plant has delay time about 5 min. So it is difficult to control the super heater temperature in the power plant. This paper show us the application of domestic development DCS to control the super heater temperature in seoul #5 thermal power plant unit.

  • PDF

The development of TGOV5 model representing a steam turbine and boiler for implementation into EMTDC (EMTDC용 1차 에너지계 모델(TGOV5) 개발)

  • Hur, J.;Kim, D.J.;Yoon, J.Y.;Moon, Y.H.;Lee, J.;Yoon, Y.B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.282-285
    • /
    • 2001
  • In general, the PSS/E program based on RMS mathematical models is used for analyzing the steady state and transient stability phenomena of full-scale large power system. Whereas, the EMTDC program unlike PSS/E, studies the specific reduced small-scale power systems as a basis of instantaneous value mathematical models and used to analyze the Electro-Magnetic transient characteristics. The PSS/E provides various control models such as exciter, governor, PSS models and TGOV5 model but there are few control models in EMTDC. In this paper, we developed EMTDC model for TGOV5 of a steam turbine and boiler which represents governor action, main, reheat and low-pressure effects, including boiler effects. The EMTDC model is developed by examining PSS/E control block and using User Define Model(UDM) in addition to default.lib provided by EMTDC. We verify the correctness of developed TGOV5 model with PSS/E and EMTDC simulation results using Governor Step(GSTEP) method.

  • PDF

A Study on Thermal Power Plant Drum Boiler-Turbine System Modeling (화력 발전용 드럼 보일러-터빈 시스템의 모델링에 관한 연구)

  • Kim, Woo-Hun;Moon, Un-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1804-1805
    • /
    • 2011
  • In recent year there has been an increasing interest in the dynamic simulation of complex systems. This study uses a large-scale forty-seventh order fossil fuel power plant. Twenty-three state variables are associated with the physical processes and twenty-four state variables associated with the control system. The plant model is expected to predict all dominant effects in a steady and transient state. In this study, the power plant model is reorganized into four subsystems, each with its controller, and the four connected to each other through a manager, which is a fifth part to the system. The four parts of the unit are the boiler system, steam turbine system, condenser system, and feedwater system.

  • PDF

Implementation of Temperature Control System of Boiler using Mobile Phone (모바일 전화기를 이용한 보일러 온도 조절 시스템 구현)

  • Han, Ki-Tae;Chung, Kyung-Yong;Kim, Sung-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.611-613
    • /
    • 2008
  • This paper describes the system that enables users to control the home electronic equipment using mobile phone. The home network industry is setting in network period that grow rapidly and get many interests. And, it is real condition that hailing of existed system is rising too. This paper developed system to make use of mobile phone regarding this and control boiler temperature in home to remote. This paper that serve this used skill of mobile programming, mobile Brew, RF radio communication, etc. for communication with server in an experiment. This paper presented another method that use RF radio communication and mobile device in home automation construction. The result of this paper will be expected to be able to contribute little in development of home network industry.

  • PDF

The Risk Assessment of Carbon Monoxide Poisoning by Gas Boiler Exhaust System and Development of Fundamental Preventive Technology (가스보일러 CO중독 위험성 예측 및 근원적 예방기술 개발)

  • Park, Chan Il;Yoo, Kee-Youn
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.27-38
    • /
    • 2021
  • We devised the system to automatically shutdown the boiler and to fundamentally block the harmful gases, including carbon monoxide, into the indoor when the exhaust system swerves: (1) The discharge pressure of the exhaust gas decreases when the exhaust pipe is disconnected. The monitoring system of the exhaust pipe is implemented by measuring the output voltage of APS(Air Pressure Sensor) installed to control the amount of combustion air. (2) The operating software was modified so that when the system recognizes the fault condition of a flue pipe, the boiler control unit displays the fault status on the indoor regulator while shutting down the boiler. In accordance with the ventilation facility standards in the "Rules for Building Equipment Standards" by the Ministry of Land, Infrastructure and Transport, experiments were conducted to ventilate indoor air. When carbon monoxide leaked in worst-case scenario, it was possible to prevent poisoning accidents. However, since 2013, the number of indoor air exchange times has been mitigated from 0.7 to 0.5 times per hour. We observed the concentration exceeding TWA 30 ppm occasionally and thus recommend to reinforce this criterion. In conclusion, if the flue pipe fault detection and the indoor air ventilation system are introduced, carbon monoxide poisoning accidents are expected to decrease significantly. Also when the manufacturing and inspection steps, the correct installation and repair are supplemented with the user's attention in missing flue, it will be served to prevent human casualties from carbon monoxide poisoning.

Complex Process Control using the Adaptive Neural Fuzzy Inference System

  • Kim, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.351-351
    • /
    • 2000
  • Since the heat exchange system, such as the boiler of power plant, gas turbine, and radiator require an application of intelligent control system for a high rate heat efficiency and the efficiency of these systems is depended on the control methods it is important for operator to understand control system of these systems and intelligent control technologies. In order to properly apply control equipment and intelligent technology to these process control systems, it is necessary to understand fuzzy, neural network, genetics, and immune as well as the basic aspects and operation principle of the process that relate control, interrelationships of the process characteristics, and the dynamics that are involved. Generally, since PID controllers are used in these systems it is difficult far engineer to understand both the complex dynamics and the intelligent control method. In this paper, we design an effective experimental system for the intelligent control education and analyze its characteristics through experimental system and each intelligent method to study how they can learn intelligent control system by experiments.

  • PDF

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

A Study on the Effect of Recirculated Exhaust Gas upon Exhaust Emissions of Boiler with a FGR System (FGR 시스템 보일러의 배기 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Jung, Kwang-Ho;Cho, Yong-Soo;Bae, Myung-Whan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.405-415
    • /
    • 2007
  • The effects of recirculated exhaust gas on exhaust emissions under four kinds of nozzle tip with the different fuel consumption rates are experimentally investigated by using an once-through boiler with a FGR system. The purpose of this study is to develop the FGR control system for reducing $NO_x$ emissions in boilers. Intake and exhaust oxygen concentrations, and equivalence ratio are considered to figure out the effect of FGR rate on exhaust emissions at various fuel consumption rates. It is found that $NO_x$ emissions are markedly decreased, while soot emissions are increased owing to the drop of intake and exhaust oxygen concentrations, and the rise of equivalence ratio as FGR rates are elevated. One can also conclude that the reduction in $NO_x$ emissions is more considerably influenced by the variation of equivalence ratio due to the FGR rate than the fuel consumption rate.

Operation optimization of auxiliary electric boiler system in HTR-PM nuclear power plant

  • Du, Xingxuan;Ma, Xiaolong;Liu, Junfeng;Wu, Shifa;Wang, Pengfei
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2840-2851
    • /
    • 2022
  • Electric boilers (EBs) are the backup steam source for the auxiliary steam system of high-temperature gas-cooled reactor nuclear power plants. When the plant is in normal operations, the EB is always in hot standby status. However, the current hot standby operation strategy has problems of slow response, high power consumption, and long operation time. To solve these problems, this study focuses on the optimization of hot standby operations for the EB system. First, mathematical models of an electrode immersion EB and its accompanying deaerator were established. Then, a control simulation platform of the EB system was developed in MATLAB/Simulink implementing the established mathematical models and corresponding control systems. Finally, two optimization strategies for the EB hot standby operation were proposed, followed by dynamic simulations of the EB system transient from hot standby to normal operations. The results indicate that the proposed optimization strategies can significantly speed up the transient response of the EB system from hot standby to normal operations and reduce the power consumption in hot standby operations, improving the dynamic performance and economy of the system.